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Executive summary 

Digital Twin Network (DTN) is foreseen as one of the essential tools for managing the 

complexity and demands for emerging 6G networks, offering a high-fidelity and real-

time virtual environment that would mirror complex behaviors of the underlying 

physical network. This critical technology integrated with 6G networks will enhance 

network planning, monitoring, optimization, security, reliability and more. This, in turn, 

would enable telecommunication operators to improve the network performance, 

reduce the networks’ capital and operational costs and accelerate innovation while 

maintaining high service quality and availability. Creating the perfect recipe of a highly 

accurate DTN requires several ingredients to come together into the mix - data 

collected from the physical network, advanced modeling techniques for DTN, and 

robust interfaces around DTN. The objective of this research report is to deep dive into 

a set of key technologies that would enable the realizations of these key ingredients 

into shaping up the high-fidelity digital avatar of a 6G network, and to ensure seamless 

interaction and synchronization between the digital and physical realms. In particular, 

this research report focuses on Digital Twin for Radio Access Network (RAN) or DT-

RAN, one of the most complex domains within a network infrastructure. Understanding 

intricacies of Digital Twin enablers for RAN will be crucial in extending the scope of 

this technology beyond the RAN Domain and to other parts of the network.  

In Section 1 of the report, we provide a general introduction of Digital Twin as a 

pioneering technology for 6G RAN, and a brief overview of the related works 

happening in industry standards fora. Section 1 sets the stage for the following Section 

2 and the subsections therein, where we get into the detailed analysis of various 

building blocks of a DT-RAN and relevant technology enablers that are going to make 

these building blocks realizable in practice, along with a few illustrative use cases 

explaining how these technology enablers play a key role in developing DT-RANs 

catering to those scenarios. Section 2.1 focuses on explaining the importance of data 

for DT-RAN and various sources of data collection along with relevant techniques for 

data collection, generation, and augmentation. Section 2.2 addresses the modeling 

aspects of DT-RAN, highlighting the modeling of network elements, physical 

environment, network subscribers and ultimately, the end-to-end systems. Sections 

2.3 and 2.4 highlight the importance of accelerated computing, virtualization 

techniques and trustworthiness management provisions to realize a highly efficient 

DT-RAN. The following Section 2.5 elaborates on aspects related to interfaces around 

Digital Twin for RAN, enabling efficient intercommunication and information exchange 

between various components of a DT-RAN as well as between DT-RAN and 

underlying physical networks. Section 3 concludes the research report with a summary 

of key findings from Section 2.   
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1 Introduction 

As the telecommunication experts across the academia and industry continue to 

shape the scope of the emerging sixth generation (6G) wireless networks, it has 

become apparent that the onset of 6G will manifest into many novel applications and 

services, ranging from multi-dimensional sensing, network and computing 

convergence, pervasive intelligence, immersive multimedia, extended reality, 

holographic communication to connectivity for industry 4.0 and beyond, as illustrated 

in ITU-R M.2160-0. Enabling this wide range of use cases requires addressing a 

diverse set of requirements, which would be difficult to meet with the previous 

generations of wireless networks. To that end, various state-of-the-art technologies 

have emerged as key enablers for 6G use cases, among which the Digital Twin (DT) 

has stood out as one of the highly promising candidates to facilitate the design, 

analysis, operation, automation, and intelligence of 6G wireless networks. It is 

noteworthy that the digital twin concept has been around for quite some time across 

other industry verticals. Internet Research Task Force (IRTF) is working actively on 

the exploration of digital twin as a rapid adoption technology for Industry 4.0 

requirements. The technical draft [3] published by IRTF describes reference 

architecture and key challenges for building a network digital twin [3]. Similarly, digital 

twin architecture proposals for performance optimization of optical networks are 

published by IRTF in [4]. 

A Digital Twin Network (DTN) is a digital replica of a communications network, or part(s) 

of a communications network, including, for example, any combination(s) of physical 

network elements and components, virtualized/cloud-native (containerized) network 

functions (VNFs/CNFs), physical hosts for such VNFs/CNFs etc. Unlike conventional 

network simulators, the DTN supports communication between the physical network 

and the virtual twin network to achieve real-time interactive mapping. DTN provides 

an experimentation sandbox where network designers, developers, and operators can 

play with various network configurations and topologies in a risk-free environment, 

before applying those changes in the real network. Inspired by the great potential of 

DTs for wireless networks, several initiatives have emerged in standards bodies to 

develop initial guidelines for DTNs. The International Telecommunication Union 

Telecommunication Standardization Sector (ITU-T) has released a recommendation 

(ITU-T Y.3090) in February 2023 that describes the requirements and architecture of 

DTNs. The International Telecommunication Union Radiocommunication Sector (ITU-

R) has published a report (ITU-R M.2516-0) in November 2022 on future technology 

trends of IMT systems towards 2030 and beyond with a list of key emerging use cases 

for 6G and listed DTNs as one of the important candidates in that category. In 

particular, ITU-R recommends a top-level design of the Digital Twin for Radio Access 

Network (DT-RAN) to be considered first, before extending the scope to beyond the 

Radio Access Network (RAN). Accommodating diverse physical RAN networks, DT-

RAN can be designed as a first candidate for DTNs, as per ITU-R recommendation. 

RAN is arguably the most complex and compute intensive part of a wireless network 

infrastructure. Creating a high-fidelity digital replica of RAN, which would truthfully 

mirror a slew of complex behaviors consistently and continually with time is a non-

https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2160-0-202311-I!!PDF-E.pdf
https://www.itu.int/rec/T-REC-Y.3090-202202-I/en
https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2160-0-202311-I!!PDF-E.pdf
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trivial challenge. As RANs are evolving towards increased heterogeneity, dynamicity, 

and complexity, it is natural that DT-RANs would require advanced technical 

capabilities to faithfully replicate the physical network traits in the virtual domain. To 

that end, creating a high-fidelity and scalable digital replica of the real-life wireless 

propagation channel between the physical network and the UEs is also an important 

part of DT-RAN. 

In the subsequent sections, we will deep dive into some of these key technologies that 

would be critical to enabling highly sophisticated DT-RAN. In particular, we will focus 

on O-RAN Alliance (O-RAN) specific aspects of these key enabling technologies that 

would make DT-RAN a reality for the open RAN ecosystem as it steps into the 6G era.  

2 Key Enablers of DT-RAN 

The foundation of a DT-RAN can be built upon the three key pillars of a general DT: 

Data, Models, and Interfaces. DT-RAN’s ability to represent its physical counterparts 

with high fidelity hinges upon various characteristics of data used to construct its 

models, and the precision as well as accuracy of those models in emulating and 

predicting physical network’s behavior. Meanwhile, interfaces surrounding DT-RAN 

facilitate its seamless interaction with the underlying physical network and related 

network applications, as well as between various modules of the DT-RAN itself. The 

inception of a DT-RAN begins with enabling various facets of these key pillars. 

Alongside, making DT-RAN efficient, reliable, and trackable are also crucial, which 

require high performance computing capability, ability to monitor DT-RAN’s 

trustworthiness over time and visualize DT-RAN’s complex actions and operations.  

Therefore, creation of a high-fidelity DT-RAN requires a set of key enablers coming 

together, namely data, modeling, computing, visualization, trustworthiness 

management and interfaces around DT. The details of these various facets are 

illustrated in the following subsections, along with specific use cases illustrating how 

these key enablers can come together to realize DT-RAN for certain scenarios. In 

particular, the use cases addressed in the following subsections are derived from the 

research report published by O-RAN titled “Digital Twin RAN Use Cases” [42] and 

evolve around DT-RAN for AI/ML training, testing and performance assurance, 

network planning, network energy saving, site-specific network optimization and 

network automation. 

 

2.1 Data: Acquisition & Management  

Data is one of the fundamental building blocks of DT-RAN. In general, DT of a wireless 

network can acquire data from various sources as depicted in Figure 2-1. It is 

noteworthy that Figure 2-1 is showing an illustrative (and non-exhaustive) list of data 

sources for DT-RAN and there could be additional sources of data depending on use 

cases (for example, data from intelligent transportation systems, emergency, and 

disaster response systems etc.).The collected data is used for creating, calibrating, 

updating, and configuring a digital twin. Specifically for DT-RAN, its architecture and 
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interfaces are essential for enabling various aspects of data, including data acquisition 

and data management. O-RAN has established a cloud-native RAN architecture with 

open interfaces for generic, open RANs. Those can provide the basis for a viable 

solution for DT-RAN data collection and data management. 

 

2.1.1 Data Acquisition: Collection, Generation & Augmentation  

Data can be acquired by DT-RAN through various means, including data collection 

from real world (e.g., from the physical environment or from the network elements), 

synthetic data generation, and data augmentation - a hybrid approach of combining 

synthetic data with real data to create a richer dataset. The efficacy of a high-fidelity 

DT-RAN relies both on the quality as well as the quantity of data collected from these 

diverse sources and enabled by various means. 

Acquisition of data from various sources as depicted in Figure 2-1 can be one-time, 

periodic, or event-based. For example, in case of a DT-RAN deployed in an urban city, 

Computer-Aided Design (CAD)/map data can be either a one-time input, or very low 

frequency periodic update (e.g., every 6 months), or an event-based update (when 

either an aerial imaging survey, or city planning indicates a change in the city 

landscape). On the other hand, camera, Light Detection and Ranging (LiDAR) or 

sensors can provide updates with a higher frequency (of the order of few minutes to 

few hours), capturing changes in the surrounding of these devices. 

Data from Radio Frequency (RF) measurements, alarms and performance metrics can 

be used for calibrating the DT-RAN, or for assessing the impact of a ‘what-if’ study 

related to physical RAN configuration. 

 

Figure 2-1: Example Data Sources for a Wireless Network Digital Twin 

 

2.1.1.1  Collection of Data from Physical Environment  

Data collection from the (complex) physical environment surrounding the live network 

is crucial for enabling high-fidelity DT-RAN that can replicate the commercial RAN 

deployment as closely as possible. Channel and propagation conditions can be 
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approximated by empirical models, but discrepancies with reality will mean that 

predictions of a digital twin will have errors. The error will lead to suboptimal network 

performance. Another confounding factor is that the physical environment is dynamic 

and constantly changing, with changes ranging from short term fluctuations to diurnal 

and seasonal cycles. Fading and shadowing are constantly fluctuating in unpredictable 

ways as objects and people move, leaf cover changes, weather changes, and 

structures are built, reconstructed, and demolished. These characteristics vary by 

frequency, adding further complexity to the physical environment modeling. The 

spatiotemporal and connection characteristics of the mobile network subscribers are 

also affecting the modeling of the network environment.  

Despite the complex nature of the physical environment and its dynamically evolving 

characteristics, there exists various technology enablers that can facilitate data 

collection from various sources in the physical environment, with the required 

frequency and quantity, to create the necessary models for DT-RAN. Data collected 

from the physical environment capture various aspects of wireless systems. Type of 

parameters captured as part of the data collection depends on the layout/scenario of 

the physical network. For example, data collection for most of the public-outdoor 

networks may require collection of only coarse level parameters like Reference Signal 

Strength Indicator (RSSI)/ Reference Signal Received Power (RSRP)/Location 

Information or other parameters derivable from these (e.g., Reference Signal 

Received Quality (RSRQ)), whereas a private-indoor network may require collection 

of images/video streams from Closed Circuit Television (CCTV) cameras for three-

dimensional (3D) model updates. In another example of some other remote outdoor 

condition, e.g., for over-the-sea maritime scenario, it may require to additionally collect 

more detailed information e.g., sea state information, weather condition etc. 

Type of data that can be captured from physical environment and radio network can 

include but is not limited to:  

• RF channel measurements (RSSI, RSRP, Signal-to-Interference-plus-Noise Ratio 

(SINR)). 

o More detailed information like Power Delay Profile (PDP)/Channel Impulse 

Response (CIR) for indoor scenarios. 

• Throughput/Latency measurements. 

o Capturing user experience. 

• Positioning information. 

o Geo-tagging radio data. 

• Visuals (image, video, LiDAR scans) capturing objects/surrounding/scene. 

• Integrated Sensing and Communication (ISAC), Radio Detection and Ranging 

(RADAR)/RF sensing captures (base stations/user devices acting as RADARs). 

• Sea state information e.g., wave height for maritime scenarios. 

• Weather condition e.g., rain rate, fog, snow, temperature, wind speed and 

atmospheric conditions. 
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The data can be used as ground truth for building and calibrating corresponding digital 

replica of the physical environment to be used as a part of DT-RAN. It can also be 

used for evaluating the performance of a DT-RAN, i.e., how accurate are DT-RAN 

predicted results. 

Enabling Technologies:  

Measurements of the physical environment surrounding a physical network can take 

place in a variety of ways. When the network is initially installed, the technicians who 

install and service the network will often collect measurements of the physical network. 

These measurements can include signal coverage and quality for different cells at 

different locations. While some of these measurements can become outdated and less 

relevant over time, they can be relevant in some circumstances. Measurement 

campaigns need not be associated with the installation and servicing of infrastructure. 

Although they can be costly, they can be performed at any time. 

Sensors such as signal scanners or active mobile devices can be deployed in the 

network to collect ongoing measurements without the need for a technician to 

intervene. So-called smart sensors can make measurements much like those at the 

installation stage and may be installed on a fixed structure or attached to a vehicle to 

survey a wider area. The network itself can be used to make measurements of the 

physical environment. The base stations can collect RF measurements and mobile 

devices generally make measurements (e.g., RSRP/RSSI), reporting these to the 

infrastructure for radio resources and mobility management. 

ISAC is gaining attention as a promising technology. The signals that are used for 

communication also have utility for sensing, where the nature of backscattered signal 

correlates with objects in the environment and doppler shift correlates with motion. 

This facilitates localizing objects in the environment or establishing information about 

their characteristics or identity, along with measuring information about environmental 

conditions. While this field is in its infancy, its potential for enabling digital twin as it 

matures is promising (for example, German national 6G Project on ISAC titled 

“komsens”). 

In general, data collection techniques from the physical environment can be broadly 

categorized into two buckets: legacy techniques and enhanced techniques. Following 

is a non-exhaustive list of key enablers corresponding to each of these technique-

categories:  

Legacy Techniques: 

• Drive Tests with reference devices capturing RF/Positioning/Throughput/Latency 

measurements. 

• Minimization of Drive Tests (MDT) based data collection in cellular networks from 

user devices capturing information supported as per standard 

procedures/protocols [1]. 

  

Enhanced Techniques: 

https://www.komsens-6g.com/
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• MDT Enhancements 

o Enhancing the legacy MDT to support additional requirements for digital twin, 

if needed. 

• Smart Cameras (with On-device Artificial Intelligence/Machine Learning (AI/ML) 

support) 

o Integrating cameras with RAN deployment for capturing images/videos of 

installation sites. Collected data can be processed in pseudo real-time/non-

real time to generate information on changes in the physical environment. 

The change information can be used to update the digital twin. 

o Example - in a public-outdoor network (like marketplace) camera data can 

help in detecting any changes required in 3D model, like new objects 

causing shadowing/blockage, or change in subscriber density (based of 

traffic flow). Similarly, in a public-indoor network (like stadium) camera data 

can help in updating 3D model with subscriber density. Updated digital twin 

can optimize network for the sporting events. 

• LiDAR Scanners 

o 3D model creation/update of network deployment areas can be performed 

using data collected from LiDAR scanners (vehicle or drone mounted). 

• Any other Internet of Things (IoT)/Sensor/ISAC devices. 

o IoT/Sensor devices (e.g., RSRP monitor, device density monitor, 

temperature/humidity sensors etc.) can be installed in the network 

deployment areas to do ‘autonomously monitored’ data collection and 

upload to digital twin. The data can be used for digital twin update/calibration. 

• Maps 

o Digital twin can create/update 3D model of the network deployment areas 

based on the Topological/Topographical Maps. 

 
To summarize, on top of the commercial RAN itself, it is essential to represent the 

physical world, topology, and objects accurately that could impact the radio access 

network. Thus, technologies like smart sensors, IoT devices, and ISAC will play an 

important role in collecting data from the physical environment and enable accurate 

modeling of these various entities in a radio access network deployment environment. 

Example Use Cases: 

Use Case 1: DT-RAN for Network Planning 

Smarter planning decisions can be made if DT-RAN can accurately predict the 

propagation and channel characteristics between a transmitter and a receiver in a 

physical network. Given a proposed site for a new antenna, or a new frequency carrier 

at an existing site, a digital twin of the radio environment will be able to predict what 

signal strength and quality can be achieved for a given distribution of subscribers. 

Hence the data collection from physical elements can enable the use case of “DT-

RAN for network planning.”  
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Type of data collection and its usage in enabling network planning include but are not 

limited to: 

• Data collected from physical environment: 

o RSSI/RSRP measurements along with measurements providing Positioning 

information at selected locations in the physical area under planning using 

legacy methods of data collection as explained in the previous subsection. 

▪ Locations are selected carefully to ensure data is available for 

diverse set of channel conditions in the area under planning.  

• Data generated from digital twin: 

o RSSI/RSRP heatmaps for all base stations within the area under planning. 

o Mapping of location information and heatmap, i.e., overlaying heatmap on 

the actual physical location vector. 

• Calibration of digital twin using collected data. 

o Comparison between RSSI/RSRP values from digital twin generated 

heatmap and the values collected from physical environment.  

▪ Any differences between these values require calibration 

adjustments to be performed on digital twin. One or more aspects of 

the digital twin may require correction/update, for example -  

• 3D Model – Refinement of surfaces, edges, objects, etc. 

• Material Mapping – Reassignment of materials to minimize the 

gap between electromagnetic and optical properties. 

• Ray tracing & electromagnetic calculations – Minimizing 

inconsistencies, configuration differences between physical 

and digital twin configurations. 

• Iterating above steps with new measurement and location datasets to minimize the 

error between physical environment and digital twin predictions. 

Once the DT-RAN has achieved required accuracy, it can be used to generate 

exhaustive RSSI/RSRP heatmaps for various candidate cell-site locations & beam 

configurations. Generated heatmaps can be used by AI/ML based use cases like 

coverage and capacity optimization, mobility optimization etc. to adjust and arrive at 

optimal network configuration, minimizing/eliminating coverage gaps. 

 

Use Case 2: DT-RAN for Network Performance Predictions 

The DT-RAN replicates the physical network's components and operational conditions, 

enabling an accurate analysis and prediction of the network performance before actual 

deployment. This predictive capability is invaluable for optimizing resource allocation, 

enhancing efficiency, and ensuring that the network meets performance expectations 

and service quality.  It avoids trial-and-error approach in traditional network 

deployment, minimizes the risk of costly errors, and enhances overall network 

reliability. 

 

Figure 2-2 shows how a DT-RAN can closely mimic a 5G RAN deployment based on 

O-RAN architecture and interfaces. The DT-RAN system here can include elements 
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in the O-RAN architecture like O-RAN Distributed Units (O-DUs), O-RAN Central Unit-

Control Planes (O-CU-CPs), O-RAN Central Unit-User Planes (O-CU-UPs), O-RAN 

Radio Units (O-RUs) etc. Also, the DT representations of the network elements in the 

DT-RAN system can be implemented to support the same interfaces as the real 

network elements themselves. This includes 3rd Generation Partnership Project 

(3GPP) RAN interfaces like X2, Xn, NG, F1, E1 and O-RAN defined interfaces like the 

Open Fronthaul Control-User-Synchronization (FH CUS) plane, Open FH 

Management plane (M-plane), O1, O2, A1, R1, E2, Y1 etc. 

 

In Figure 2-2, the F1 interface can provide information on radio environments, such as 

radio channel conditions and radio resource allocations. Thus, the DT-RAN can use 

data to emulate the radio access network performance and behaviors. 

 

Figure 2-2: DT-RAN Architecture to Mimic Real O-RAN Deployment 

In general, DT-RAN should be able to flexibly replicate different operator deployment 

scenarios including different topologies with their respective hierarchies of network 

elements. Novel modeling, data minimization and representation approaches can be 

used to minimize the amount of data transfer involved, striking a good balance 

between the data quality and the data quantity. The DT-RAN can be fully virtualized 

and run on a similar/same cloud platform that the operator uses for the rest of the 

virtualized O-RAN elements. 

 

2.1.1.2  Collection of Data from Network Elements 

In the previous subsections, network elements are described to have utility for 

measuring the physical environment, but their potential for enabling DT-RAN goes 

beyond that. A specific network element such as a physical or virtual network function 

can expose a certain functionality. This is typically in the form of the interfaces defined 
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by industry standards or specifications. Generally, a well-tested commercially 

deployed network function can be relied upon to conform to the standards. However, 

nodes generally contain proprietary algorithms, for example, algorithms for scheduling, 

prioritisation, encoding, dealing with congestion and impairments, etc. There can be 

wide ranges of responses that are conformant to the specifications. These responses 

in general vary by the situation in which the node finds itself. How it responds under 

congestion may be quite different to how it operates in lightly loaded conditions. 

Sparse measurements of a specific network element’s behavior in response to 

extraneous stimuli can be used to build a digital twin, which can predict this element’s 

behavior under a wide range of conditions. Examples of such extraneous stimuli may 

include impairments in network connectivity, network loading conditions etc. 

In addition to extraneous conditions, a network element’s behavior is also shaped by 

its internal state, which may include configured parameters, and the connection 

management process associated with that network element. In contrast to virtual 

network elements, physical network elements are affected by physical phenomena 

such as temperature. Virtual network elements can also have some performance 

coupling to the physical compute nodes on which they reside, and this can 

consequently manifest into the response of the virtual network element. Being able to 

model how the different components of the network, including the physical elements 

and virtual elements, the underlying physical compute nodes, and the transport 

connectivity between them will behave in given scenarios underpins the ‘what-if’ 

scenarios. 

In general, DT-RAN is a collection of both physical environment as well as the radio 

access network side infrastructure of the mobile network operator. Data from both 

these entities is needed to create an end-to-end simulation of the real network. Data 

collection from the network elements is essential to provide insight into the network 

operation as explained above. In the context of an O-RAN architecture, data collected 

by performance and configuration monitoring systems through O1 interfaces can be 

utilized by non-Real Time (non-RT) RAN Intelligent Control (RIC) and near-Real Time 

(near-RT) RIC through interfaces designated in Figure 2-2. Those data can be used 

to optimize the network slicing and Quality-of-Service (QoS) of data flows.  

DT-RAN has the potential to enable a service aware network for various vertical 

applications.  

3GPP and O-RAN have defined various mechanisms for data collection from the 

network elements in a standardized way. The following are different standardised 

options currently available to collect data from RAN: 

• Performance KPIs – defined in TS 28.522 and adopted in O-RAN O1 specification. 

• Fault/Alarms – defined in TS 28.622 and adopted in O-RAN O1 specification. 

• Trace mechanism – defined in TS 32.422 and adopted in O-RAN O1 specification. 

• MDT Report – defined in TS 37.320 and adopted in O-RAN O1 specification. 

• Configuration Parameters – defined in TS 28.531 and adopted in O-RAN O1 

specification. 

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3387
https://orandownloadsweb.azurewebsites.net/specifications
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=1541
https://orandownloadsweb.azurewebsites.net/specifications
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2009
https://orandownloadsweb.azurewebsites.net/specifications
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2602
https://orandownloadsweb.azurewebsites.net/specifications
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3274
https://orandownloadsweb.azurewebsites.net/specifications
https://orandownloadsweb.azurewebsites.net/specifications
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• O-RAN specified additional configurations, Key Performance Indicators (KPIs) and 

faults defined in O-RAN specifications. 

These Fault, Configuration, Accounting, Performance and Security (FCAPS) data 

provide meaningful insight into network element configuration and its operation. 

Outside these parameters, the cloud related software configurations and deployment 

aspects are also specified in O-RAN O2 interface specification. 

These data can be fed into DT-RANs. Configuration Management (CM) data contains 

information about the state of various parameters that are exposed by the network 

elements. These are generally available in the Service Management and 

Orchestration (SMO) or Operational Support Systems (OSS) databases, or via well-

defined interfaces such as O2 as mentioned above. Fault Management (FM) data as 

mentioned above generally exposes occurrences of errors, impairments, anomalies 

and other unexpected or unwanted conditions. This can include overload conditions, 

situations where the network element has entered a recovery or failover state, failure 

of physical infrastructure or similar. This can reveal insights about the resilience or 

otherwise of the network element in the face of various problems. Performance 

Management (PM) data as mentioned above contains various KPIs, counters, 

statistics, etc. concerning how a node is used and the associated performance at 

various network layers. This can include throughputs, retransmissions count, statistics 

about modulation, coding, and channel state. It can also include numbers of attempts, 

successes, and failures for system accesses and connection events, along with 

numbers of normal releases and connection failures. Also, the proportion of physical 

resources that are used along with energy consumption can be captured. 

In contrast to PM data, which is aggregated by network element, trace data as 

mentioned above is more granular down to the level of an individual User Equipment 

(UE) connection. This can include the sequence of messages and events that 

comprise of a specific traced call, along with information about Medium Access Control 

(MAC), Radio Link Control (RLC) and physical layer measurements. Network probes 

or data collection agents can collect data from the interfaces of physical or virtual 

network elements. These data may contain information to characterise the network 

element for creation of a digital twin such as the volumes of communication data to 

different endpoints or even finer granular data about the individual flows. Various RAN 

components can pass data through standardized interfaces shown in Figure 2-2. O-

RU can pass data through front haul interfaces to O-DU, while O-DUs, O-CU-CPs and 

O-CU-UPs can pass data through O1 and E1 interfaces. SMO can use the data to 

oversee the orchestration, automation and control of RAN functions and infrastructure. 

Enabling Technologies: 

All the FCAPS data mentioned above are collected and processed using software 

tools like Prometheus, Grafana, Kibana etc. These tools can help collecting and 

processing the data and provide meaningful insights into the operation of the network.  

Example Use Cases: 

https://orandownloadsweb.azurewebsites.net/specifications
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Use Case 1: DT-RAN for Testing of Non-RT RIC/rApps 

The data collected from physical and virtual network elements can be used by 

developers/operators to test non-RT RIC applications (rApps) using the DT-RAN to 

increase the implementation maturity, performance, and confidence level of these 

applications before they are deployed in a real network. The DT-RAN should be able 

to interact with these applications just as it does with a real O-RAN deployment. For 

example, an rApp deployed in the non-RT RIC can interact with the DT-RAN the very 

same way it would interact with the real O-RAN deployment. Similarly, DT-RAN can 

be used for testing the efficacy of near-RT RIC applications (xApps) as well prior to 

deployment in real network. 

Use Case 2: DT-RAN for Network Planning 

The network element configuration parameters will provide the DT-RAN with the real 

time configuration of the network which will enable the DT-RAN to operate with the 

similar configuration. Once the replica of real network configuration data is fed to the 

DT-RAN, the configuration parameters can be iteratively tweaked and modified to 

achieve the required network planning. The performance and the fault data collected 

from the network can be used in the DT-RAN to understand the performance of the 

network with certain configuration. The physical environment data together with the 

data collected from the network elements can be iteratively used in the DT-RAN until 

the network planning objective is met.  

Use Case 3: DT-RAN for Network Energy Saving 

Data from network elements can contribute to network energy saving enabled by DT-

RAN. For example, various data from the network elements including CM, PM and 

trace can be used to build models for how the energy consumption and performance 

are related to the configuration, loading and utilization of the radio access network. If 

this relationship is known, different configurations can be sought that deliver the 

services required while maximizing the magnitude of the energy saving. 

 

2.1.1.3  Synthetic Data Generation  

Data is required to train AI/ML models for specific use cases within the network or in 
the UE. These AI/ML models can be relevant both for the physical networks (e.g., 
AI/ML models deployed in non-RT RIC or near-RT RIC of O-RAN networks), as well 
as for modeling digital twins for various aspects/parts of the physical network (e.g. DT-
RAN). AI/ML models trained for one specific use case, often cannot be used for 
another use case without additional training with additional data specific to the new 
use case. For example, a model trained for beamforming optimization for a cell-site in 
downtown San Francisco with data collected from that cell-site (or with data 
synthetically generated by simulating that specific cell-site in DT-RAN), will likely not 
be generic enough to be applicable for a cell-site in rural California. This increases the 
demand for site-specific data which is often not available in the desired volume needed 
to effectively train site-specific AI/ML models. One way to meet the data demand can 
be by using the DT-RAN of a specific cell-site to generate additional synthetic data. 
But to create a faithful digital replica of a specific cell-site itself, a large quantity of site-
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specific data would be needed, which, in turn, would necessitate alternate ways for 
generating synthetic data for the DT-RAN first, before utilizing the DT-RAN for 
generating synthetic data for the AI/ML models deployed in the physical network. 

The data necessary for training AI/ML models can also be of different types. For 
example, the data can include information about the demand placed on the network 
by the subscribers, the characteristics of the radio and other physical interfaces, and 
the configuration and state of the network elements. In some cases, the data may 
characterize the behavior of the network elements and their response to the stimulus. 
Sometimes, for purely software-defined network elements, the software itself may be 
used directly as a component of the digital twin. In other cases, where the element is 
partly comprised of hardware or where reproducing the complete functionality is not 
necessary and would increase the running cost of the digital twin, the behavior of the 
network elements may be modeled as part of the digital twin.  

Historical data for all possible configurations, morphologies and scenarios would be 
best suited to train the AI/ML models for DT-RAN to understand the possible outcomes 
and model performance. However, it is not practical to have historical data for all 
permutations and combinations of scenarios and configurations. In the absence of 
sufficient historical data, data needs to be synthetically generated for specific 
scenarios and requirements to train the AI/ML models. Even when available, data is 
often costly to collect and manage, especially if it is dispersed throughout the network. 
Using limited data to train models can lead to models with biases and poor 
performance. 

Synthetically generated data can augment authentic data and mitigate the impact of 
the lack of data, leading to better performing models with improved accuracy, 
precision, and recall. Synthetic data can express a wider range of scenarios than are 
experienced in a real network. For example, the demand placed on the network by the 
users along with the way that the various components of the network respond to this 
demand is highly multi-dimensional. Sampling the examples expressed in the real 
network will be only a subset of the possible range of combinations of stimulus and 
response. Synthetic data is a way to increase the sampling diversity across the whole 
space of scenarios. Then the models that are trained using this data will be exposed 
to a wider range of realistic scenarios. 

Another motivation for synthetic data usage is to enhance privacy. Some data are 

granular and involve the behavior of actual subscribers as they use the network or the 

location in the network they are connected to. This can constitute personally 

identifiable information (PII) and so the data must be treated with care. This limits what 

data can be used for and what models can be trained with it. Synthetic data can 

address this issue by creating datasets that in aggregate have the macro 

characteristics of the users of the network, while in detail are entirely synthetic and not 

representative of individual users. This reduces restrictions on where the data can be 

used and what models can be trained with. 

Finally, synthetic data generation can potentially be used to increase resilience to 

noise, missing features, and security threats. In general, wise use of data 
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augmentation can lead to increased model performance, generalization, and 

resilience. 

Enabling Technologies:  

DT in itself is a powerful technology for synthetic data generation. Data generation is 
one of the key use cases of DT-RAN. Once a DT of the real network is established, 
DT-RAN can be used to generate data to know the possible outcomes for different 
configurations and scenarios. DT-RAN can be used to generate synthetic data to train 
any AI/ML model for networks and UE by configuring the DT-RAN with the required 
scenario and generating the performance metrics. 

In the context of generative AI, while transformers have become popularised by high 

profile models such as ChatGPT, they also have the potential to be used for synthetic 

data generation appropriate to mobile networks (e.g., synthetic channel data for target 

RF propagation scenario [43]), given appropriate precautionary measures are taken 

to combat detrimental issues such as “AI hallucinations”. As well as generation of 

natural languages, transformers can generate time series and event sequences, both 

of which can underpin aspects of a DT-RAN. A variational auto-encoder (VAE) is also 

capable of generating synthetic data. Once trained it maps the full-dimensional data 

into a probabilistic lower-dimensional latent space. Synthetic data examples can then 

be generated by sampling from the latent space and performing the corresponding 

decoding. 

Generative Adversarial Network (GAN) is another example method to create a model 

capable of generating synthetic data. A generator model is created that can output 

examples in the form of the data for which synthetic examples are required. The 

generator in turn is trained by a discriminator. Various examples in the literature 

describe how GANs can be used to generate synthetic 5G data. The use of a GAN to 

generate synthetic examples of Call Detail Records (CDRs) is described in [45]. The 

performances of two types of GANs, viz. Conditional Tabular GAN and Topological 

Variational Autoencoder for generating synthetic 5G data are compared in [46]. 

Example Use Cases: 

Use Case 1: DT-RAN for Network Planning 

In sections 2.1.1.1 and 2.1.1.2, we have explained how data collected from real 

networks, including data from physical environment around the physical network and 

its network elements can be useful for expanding network planning for an existing site 

and predict network behavior and performance using DT-RAN for the existing physical 

network. However, physical data collected from existing network may not be adequate 

to accurately model and predict the behavior and performance of a network planned 

to be deployed in a different location. When location-specific data is lacking, synthetic 

data generated can be useful in filling the inadequacy of data availability, and help 

building a high-fidelity DT-RAN for the intended network site. The site-specific DT-

RAN can be configured with the real network configuration and various deployment 

scenarios (e.g. different base station locations, antenna distributions, traffic models 

etc.), and the KPIs can be monitored to validate if the network planning objective is 
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met. Post network deployment, the configuration data generated out of the DT-RAN 

can be used in the real network and the KPIs from the real network can be fed into the 

DT-RAN in a loop achieving high accuracy and perfecting the analytics in DT-RAN. 

Use Case 2: DT-RAN for Network Automation 

The continuous testing envisaged by DT-RAN for network automation depends on the 

models that represent the full range of realistic scenarios. This is to ensure that the 

continuous testing based on the data from these models is fully comprehensive and 

results in robust network elements with maximal reliability. Such testing ultimately 

depends on presenting test vectors to the components or systems being tested, 

whereas these test vectors are typically highly complex. A basic approach is to collect 

data from the real network and replay it as test data. This can have value, but data 

taken from the actual network will not include scenarios that, while plausible or even 

likely, may not have occurred yet or are not captured in the test data collected from 

the network. In this scenario, synthetic data can be employed to create a set of test 

scenarios that is more representative of what will be encountered in the field. 

This approach is not sufficient for the most reliable testing. It can be hard to classify 

the response to the test vectors as “right” or “wrong,” and thus “pass” or “fail” the test. 

It is the emergent behavior of the network and its associated performance metrics that 

ultimately matter. The grading of individual components as “passing” or “failing” a test 

becomes harder when the component is implemented with trained models in place of 

explicitly programmed algorithms. This is when the importance of digital twin becomes 

paramount.  

The digital twin will be able to respond to the behavior of the system under test and 

characterise the resulting performance, thus grading the quality of the components 

making up that system. If that digital twin is powered by models that can create a wide 

range of synthetic data to challenge the system under test and respond to how the 

system under test reacts to those stimuli, the likelihood that any defects in that system 

or its components will be uncovered will increase. Consequently, the reliability of the 

system will be greater. 

 

2.1.1.4  Data Augmentation 

Data augmentation can be used to address some of the same challenges that can be 

addressed by synthetic data generation. These include increasing the volume of 

limited data and the need to respect privacy when data potentially contains PII. There 

are complimentary ways that data augmentation can be used alongside synthetic data 

generation, in the context of digital twin. 

As collection of telemetry is not critical to delivering a service, it is often a lower priority 

and can sometimes get lost due to overload or congestion. Network operators can 

resort to data augmentation to impute missing data and mitigate the impact of data 

loss in the telemetry statistics. Sometimes models can be biased because certain 

regions of continuous feature or target space are more common than others, or certain 
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classes of discrete data dominate other classes. Data augmentation can offer some 

potential solutions to this imbalance problem. Model overfitting is a perennial problem 

for training models which can sometimes be mitigated by data augmentation. This 

helps in increasing the variation in the training data. 

Data augmentation can help in other ways to build better models. In general, it is 

desirable to have models that embody feature invariance, i.e., the models are robust 

to transformations. For example, it is expected that a cell in one location experiencing 

a given set of stimuli and configuration to behave in a way similar to another cell 

experiencing the same set of stimuli and configuration but located in a different place. 

Data augmentation can potentially help to achieve feature invariance.  

Finally, data augmentation can potentially be used to increase resilience to noise, 

missing features, and security threats. In general, wise use of data augmentation can 

lead to increased model performance, generalization, and resilience. 

Enabling Technologies:  

There are various data augmentation techniques useful for DT-RAN. Some of these 
techniques can benefit from domain-specific transformations. As one example, in the 
case of processing image data, data augmentation can be achieved by performing 
geometric transformations (e.g., rotation, zooming, cropping). As another example, in 
the case of timeseries and signal data, data augmentation can involve various 
transformations such as warping, windowing, jittering, and shifting. 

Data imputation using techniques as simple as interpolation can also be valuable to 

augment data. Suppose the network architect needs a dataset of performance KPIs 

taken every minute, but the underlying system generating the KPIs systematically fails 

to deliver them at all timesteps. This will lead to a dataset with irregular timesteps. 

Interpolation can be employed to fill in the missing timesteps in this case, generating 

a more structured dataset that is useful for further machine learning model training. 

Data perturbation and noise injection are also commonly used data augmentation 

techniques that are particularly useful for building resilient machine learning models 

that generalize well and can be invariant to data perturbations found at the time of 

deployment. Additionally, sample imbalance can be addressed with resampling 

augmentation techniques such as Synthetic Minority Over-sampling Technique 

(SMOTE) and Adaptive Synthetic Sampling (ADASYN). These various data 

augmentation techniques lead to the generation of new samples from a given original 

dataset, resulting in the creation of a larger “augmented” training dataset. 

Other data augmentation techniques can enable the generation of additional features 

for datasets without necessarily increasing the sample size. For instance, extracting 

frequency domain representation from spectrum data and appending it to the time 

domain features. Another example could be extracting relative time from the absolute 

timestamps, and velocity from user mobility data to enrich a dataset containing only 

timestamps and coordinates. Advanced machine learning techniques can also enable 

data augmentation. Generative models, such as VAEs, GANs, and Diffusion Models 
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can enrich an existing dataset by generating new synthetic samples that are similar in 

whatever aspect deemed necessary for the downstream tasks. 

Example Use Case:  

Use Case 1: DT-RAN for AI/ML Training, Evaluation and Performance Assurance 

Data augmentation can be important to enable DT-RAN for AI/ML training, evaluation, 
and performance assurance. This use case underscores the challenge of data 
availability and the need to assure the performance of the models trained on these 
data. Careful data augmentation can clearly work to mitigate problems with the lack of 
data availability. But it can also help to address the model performance assurance 
issue, as augmentation can ensure that more quantities and variety of test data are 
available. This can help to unearth excessive biases or variances in those models, 
and trigger model retraining as needed, resulting in higher model performance. 

 

2.1.2 Data Management 

As explained above, availability of rich and diverse dataset is the cornerstone of a 

high-fidelity DT-RAN. Once data is collected, its lifecycle management including data 

analysis, storage, retrieval, maintenance and termination (including data deletion and 

discarding) becomes an important aspect of overall DT-RAN’s function. The efficacy 

of the underlying data management framework determines DT-RAN’s long-term 

stability, performance, adaptability, security, and reliability.  One of the key challenges 

that data management system of a DT-RAN can face is data drift, which is discussed 

in detail in the following subsection. 

 

2.1.2.1  Data Drift Management 

DT-RAN should behave as close as possible to the real system that it represents, e.g., 

a single network function within RAN, set of network functions within RAN, or entire 

RAN, etc. However, it is usually not straightforward to create an identical replica of the 

real system’s object with all their dynamicity.  

The DT-RAN can be realized using different types of network data, e.g., historical data, 

real-time data, near-real time data or any combination of such data, as well as using 

different data modeling framework (classical simulators, machine learning algorithms, 

statistics, etc.). Thus, the difference between the DT-RAN and the real-world object 

that it represents can largely vary based on the data used to realize the DT-RAN and 

the frequency with which the DT-RAN is being updated with the data from the real 

system. Correspondingly, the performance of the DT-RAN depends not only on the 

properties of the decision logic applied within DT-RAN, but also on the characteristics 

of the data used to realize the DT-RAN as well as the measure on how close the DT-

RAN data represents the real system. Such measure can be expressed in terms of the 

data drift, i.e., the difference between the distribution of the real system data and the 

data of the DT-RAN. 
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Enabling Technologies: 

In order to measure how close the DT-RAN represents the real system; different 

metrics need to be defined and collected. Such metrics can refer to the DT-RAN input 

or output data drift. DT-RAN input data drift is the drift in data used to realize the DT-

RAN compared to the real system. It can occur due to the change in the data 

distribution of the real system, compared to the distribution of the data used for network 

modeling within DT-RAN. In such a case, the model of the network in DT-RAN will 

deviate compared to the actual network. Consequently, the output of the DT-RAN, e.g., 

predictions on the network state can deviate compared to the actual network state, i.e., 

there can be an output data drift. This can, in turn, impact the performance of the DT-

RAN (e.g., accuracy or reliability of the recommendations and actions derived by the 

DT-RAN).  

Therefore, the information on DT-RAN data drift, i.e., the changes in the data 

distribution (either as input or output of the DT-RAN) compared to the real system data 

need to be collected and monitored. Based on the collected data drift information, 

relevant actions can be performed, e.g., updates of the DT-RAN with the new data 

collected from the real system. 

Example Use Case: 

Use Case 1: DT-RAN for Network Predictive Analysis and Optimization 

One of the common intended usages of DT-RAN is the so called ‘what if’ types of 

analysis and network optimization, where certain conditions and actions are evaluated 

in DT-RAN environment before applying the changes to the real system. In a specific 

use case, e.g., mobility management, such ‘what-if’ evaluation would be useful for 

optimization of Handover (HO) parameters settings. In such use case, the DT-RAN 

would provide a digital replica of gNB configurations and environment model, where, 

for example, the ML approach is applied to decide on the best HO decisions. The ML 

model would be running in such a DT-RAN setup and would provide inference results 

with some precision/confidence. The inference results may be, as an example, the 

recommendation on the best target cell for performing HO to optimize mobility 

management. This can be evaluated in DT-RAN and in case the evaluation results in 

a good network performance, the corresponding configuration (e.g., HO settings to 

perform HO to recommended target cell) may be applied in the real system. However, 

when applying the HO settings to actual/real systems, the consumer of DT-RAN output 

needs to consider not only the ML KPIs (precision/confidence) but also the 

performance of the DT-RAN in which the ‘what-if’ analysis has been conducted. In 

other words, it is needed to have the information on how “close” to the real system the 

DT-RAN is in practice, to be able to apply with a certain confidence level the results 

obtained in such DT-RAN. In this concrete example, the ML model in the DT-RAN may 

use different input parameters such as performance measurements and UE 

measurements (MDT data) to predict the UE location and recommend the best target 

cell. The DT-RAN input data drift would refer to the difference in the data distribution 

between the parameters used by the ML model and actual MDT data collected in the 

real system. The DT-RAN output data drift may refer to the difference in the data 
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distribution between the predicted UE location and the actual UE location obtained 

from MDT measurements of the real system.  

In the case when the DT-RAN data drift is low (or below required level), it implies that 

the recommendations on optimal HO parameters provided by the DT-RAN may be 

used in the real system with high confidence. 

 

2.2 Modeling 

The second pillar of DT-RAN constitutes “Models”. Building a comprehensive digital 

twin model for capturing the physical reality of a wireless network is of paramount 

importance for building DT-RAN. This requires developing faithful 3D models of the 

surrounding physical environment as well as the models for representing the wireless 

system existing therein. 3D models capture the nuances of the physical world where 

the wireless systems are operated and used for building the radio channel models. In 

general, wireless system is represented with a set of models corresponding to, for 

example, user device, network elements, traffic patterns [2] and applications etc., as 

shown in Figure 2-3. These models can be built independently and later can be 

integrated in a plug-and-play way as per the objective of the study/simulation. 

 

Figure 2-3: Generic Illustration of Digital Twin Models for Wireless 

Modeling of DT-RAN is multi-dimensional – comprising of various aspects of the 

physical counterpart that the DT-RAN needs to faithfully represent. It involves creating 

one or more dynamic and detailed virtual models that accurately reflects the status, 

configuration, statistical distributions, and performance of the physical RAN 

components, often in real-time. This virtual representation is continuously updated with 

data collected from sensors, monitoring devices, and other sources within the actual 

network. Some of these modeling aspects are addressed in the following subsections. 

  

2.2.1 Modeling of Network Elements 

Digital representation of a wireless network can consist of twins of one or more network 

elements depending on the scope/purpose of the analysis. These network element 

digital twins can represent complete functionality or part of the functionalities 

supported by real network element. For example, a DT-RAN used for the purpose of 

coverage/blockage analysis may only require gNB/UE digital element twins to support 

functionalities related to the broadcast of common/pilot channels on gNB and common 

channel reception/measurement on UE. Alternatively, a DT-RAN used for the purpose 

of capacity prediction would require gNB/UE digital element twins to support 
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functionalities related to CSI measurement/reporting, rate adaptation, power control, 

etc. 

Network element digital twins can be realized either as simulator, or emulator, or AI/ML 

based models or any combinations thereof depending on the scale and the complexity 

of the functionalities represented by the element twin. Alternatively, multiple network 

elements/protocol layers can be represented by a single twin. These digital twins 

should support interfaces for configurations, control, and services like the real network. 

Enabling Technologies: 

One of the promising techniques for modeling network functionalities is Graph Neural 

Networks, detailed in Section 2.2.4. One can build scalable AI/ML models for network 

functionalities using these techniques. These models can be trained using synthetic 

data and tuned using field data, reducing the need of large volume of field data 

collection. 

2.2.2 Modeling of Wireless Propagation Environment  

As a key objective of the DT-RAN is to create a virtual replica of a real-world RAN to 

faithfully simulate wireless signal propagation, high-fidelity wireless signal propagation 

models are fundamental building blocks for the modeling of DT-RAN [5]. The wireless 

signal propagation modeling helps simulate how radio signals travel through the 

environment, interact with obstacles, and affect the coverage and performance of the 

RAN. Key aspects of the wireless signal propagation modeling include path loss 

modeling, shadowing and fading, obstacle penetration, frequency-dependent effects, 

antenna characteristics, terrain and environmental conditions, etc. 

Wireless signal propagation modeling is crucial for DT-RAN in predicting the coverage 

area of radio signals within the network. By understanding how signals propagate in 

different environments and through obstacles, network operators can optimize the 

placement of antennas and plan for sufficient coverage using DT-RAN. Specifically, 

the DT-RAN with high-fidelity wireless signal propagation modeling allows network 

engineers to simulate different scenarios, such as the deployment of new base 

stations or the introduction of new frequency bands, before making changes to the 

actual network. This aids in efficient resource allocation and network expansion. Also, 

the DT-RAN with high-fidelity wireless signal propagation modeling helps in analyzing 

and mitigating interference issues within the network. By simulating the propagation 

of signals from neighboring cells or adjacent frequency bands, network operators can 

utilize the DT-RAN to identify potential interference sources and take preventive 

measures to ensure optimal network performance. 

Enabling Technologies: 

The physics of electromagnetic (EM) wave propagation is characterized by Maxwell’s 

equations. Solving Maxwell’s equations requires accurate knowledge of the boundary 

conditions at the interfaces between different materials, as well as the EM properties 

of these materials, which can be challenging to characterize accurately. To address 

specific aspects of wireless propagation without solving the full set of Maxwell's 
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equations, stochastic channel models and ray tracing are both techniques used in the 

field of wireless communication to model and simulate the behavior of radio waves.  

Motivation for Deterministic Radio Propagation Modeling: 

Stochastic channel models take a statistical and probabilistic approach [6]. They use 

statistical processes to model the random variations and uncertainties in the wireless 

channel. While stochastic channel models may capture statistical properties, they do 

not represent the precise geometric details of the environment or specific signal paths, 

leading to a lack of physical consistency and site-specificity. The shortcomings of the 

3GPP stochastic channel models are discussed in [7]-[12] and summarized below. 

Take Integrated Sensing and Communication or ISAC as an example. The 3GPP 

stochastic channel models do not address target modeling and sensing, background 

environment modeling and differentiation from targets. To support ISAC study, it is 

critical to model sensing targets and background environment, including RADAR 

cross-section, mobility, clutter, and scattering patterns. Furthermore, the modeling 

must be spatially consistent, which is lacking in the stochastic channel models. Take 

Reconfigurable Intelligent Surface (RIS) as another example. Since RIS alters its 

reflected radio signal characteristics, the effects need to be captured by the modeling 

of wireless propagation. But the 3GPP stochastic channel models do not support the 

modeling of such effects. As another example, larger antenna arrays are expected to 

be used in the new spectrum such as 7-24 GHz and sub-THz bands, calling for 

additional considerations such as near-field effects of the channel, spatial consistency 

between a device and different radio units, different channel blockers (e.g., doors, wall, 

windows, foliage, concrete, and cars), spherical wave propagation, and spatial non-

stationary effects of the channel. However, stochastic channel models often assume 

spatial stationarity. Furthermore, the use of new 7-24 GHz spectrum requires channel 

modeling consistency across different frequencies, which is yet to be validated in the 

current 3GPP stochastic channel models. Last but not the least, AI/ML is becoming an 

essential feature of 5G-Advanced toward 6G. Using data generated by stochastic 

channel models to train and test AI/ML models will lead to overly optimistic 

assessment of the models and result in failure of the AI/ML models when deployed in 

real networks. 

In short, wireless networks are becoming increasingly heterogeneous, encompassing 

different inter-site distances, antenna array dimensions and makeup, radiated powers, 

frequency bands, to name a few. Correspondingly, the wireless channel modeling 

needs to provide consistency and, above all, a correct representation of the frequency, 

spatial, and temporal correlation across base stations and devices. Achieving this 

without a propagation model grounded on the underlying physics of the scattering 

phenomena is simply unnatural, prone to modeling error and possibly a huge waste of 

effort for the industry. These considerations call for deterministic, physics-based 

modeling for wireless propagation, especially ray tracing. 

Ray Tracing Based Channel Models:  

Ray tracing is a rendering and simulation technique used in computer graphics, optics, 

and other fields to simulate the way rays of light or other radiation travel through a 
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virtual environment. In the context of wireless communication and radio wave 

propagation, ray tracing is often employed to model and simulate the paths that EM 

waves take as they propagate through various materials and interact with surfaces 

and obstacles [13]. It provides a deterministic and physics-based modeling approach 

that simulates the paths of individual rays of EM waves, considering reflections, 

refractions, diffractions, and other interactions with objects and surfaces. It offers high-

resolution simulations, capturing the specific paths of rays and the effects of the 

surrounding environment, making it valuable for site-specific planning, antenna 

design, and network optimization in the field of wireless communication. Wireless ray 

tracing, when integrated into a DT-RAN, enhances the accuracy and effectiveness of 

network planning, design, and optimization. It enables operators to make informed 

decisions based on detailed insights into the radio wave propagation environment, 

contributing to the overall performance and efficiency of the RAN. 

Differentiable Ray Tracing Based Channel Models:  

Differential ray tracing brings a unique and powerful capability to wireless signal 

propagation modeling for a DT-RAN. This technique combines traditional ray tracing 

methods with differentiability, allowing for the optimization of model parameters using 

gradient-based optimization algorithms, such as backpropagation. The concept was 

originally proposed for image rendering by computing the derivatives of a rendered 

image with respect to the scene parameters (e.g., scene geometry and materials) [44]. 

In the context of DT-RAN, differential ray tracing can be used to compute the 

derivatives of the functions of the simulated DT-RAN, such as coverage maps, with 

respect to the key parameters that impact the functions, such as material properties, 

array patterns, and geometries. Figure 2-4 shows an example of gradient-based 

optimization of the orientation of a transmitter using differential ray tracing in Sionna 

RT [14]. 

 

Figure 2-4: Gradient-Based Optimization using Differential Ray Tracing [14] 
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In addition, differentiable ray tracing can be integrated into neural network 

architectures. By making the ray tracing process differentiable, it becomes possible to 

train neural networks to learn the complex relationships between input features (such 

as environmental conditions) and output signals (such as received signal strength or 

quality). The integration of ray tracing into AI/ML frameworks facilitates the joint 

training of AI/ML models and the optimization of signal propagation models, leading to 

more accurate and adaptive DT-RAN. 

As another example, differentiable ray tracing may be adapted to model the effects of 

weather conditions on radio wave propagation. The modeling may incorporate weather 

conditions (e.g., rain, fog, snow, and atmospheric conditions) into the ray tracing 

framework. Making the ray tracing process differentiable with respect to weather 

parameters may allow for the computation of gradients that show how the weather 

parameters affect signal strength and quality. 

3D Maps Based Channel Model: 

3D map serves as a foundational element for wireless signal propagation modeling in 

a DT-RAN. It provides the necessary spatial context for accurate simulations, allowing 

the DT-RAN to capture the complex interactions between radio waves and the physical 

environment. A 3D map includes detailed terrain information, helping to model the 

topography of the landscape accurately. Terrain features, such as hills, valleys, sea 

state and uneven surfaces, significantly influence signal propagation. The 3D map 

enables the DT-RAN to account for these features, improving the accuracy of 

coverage predictions. 3D maps also include information about the height, location, and 

materials of buildings within the network area. This data is crucial for simulating the 

interaction of radio waves with buildings, considering reflections, diffraction, and 

shadowing effects. In conjunction with ray tracing techniques, a 3D map enables 

detailed simulations of how radio waves interact with the environment. In particular, 

the material properties influence how radio waves interact with various materials and 

structures in the environment. Understanding and accurately modeling material 

properties is essential for predicting signal behavior in the DT-RAN. 

3D maps of real-world layout/scenario can be created using digital 3D models, 

generated by state-of-the-art computer vision and computer graphics technology. 

Typical source of inputs for building 3D models are LiDAR scans, Camera 

Images/Videos (2D, 3D, 360°), Inertial Measurement Unit (IMU) data, Location data, 

CAD models, Floor Plans, Topological/Topographical Maps and Satellite/Aerial 

Imagery. Generated 3D models need to be processed further for surface/object 

identification and material tagging; ensuring assigned materials are same/similar in 

electromagnetic properties to the corresponding real-world objects. 

Computational complexity of running the ray tracing algorithm on such a model 

depends on the number of polygons (faces) in the model. Larger the number of 

polygons, higher is the compute resource and time requirements. Classical ray tracing 

techniques involve simulating real world phenomenon of reflection, refraction, 

diffraction, scattering and pass through. A ray path traversed between a transmitter 
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and a receiver can experience one or more of these phenomena. Phenomena of 

diffraction and scattering create many new ray paths from a single incoming ray.  

To limit the size of a 3D model to a reasonable number of polygons (faces), one must 

do model simplification considering aspects like ‘size of the real-world layout/scenario’, 

‘required fidelity of the model’, ‘required accuracy of the results’, ‘available compute 

resources’ and ‘type of interaction between real network and digital twin network (real-

time, pseudo real-time, offline)’. For example, a 3D model of a small-scale indoor 

factory/warehouse may need to have large number of polygons (high fidelity), if the 

results are expected to capture exhaustive list of multipaths from ray tracing. In 

contrast to that the 3D model of a city urban area (large-scale outdoor) may require 

comparatively small number of polygons, if the results are expected to capture coarse 

level multipaths, blockages and shadowing. 

Simulating radio wave propagation (RF channel) in the generated 3D model requires 

evaluating electromagnetic properties over the multipaths generated from ray tracing 

[15]. Alternatively, one can build and use AI/ML based models for predicting the RF 

channel behavior. Building of AI/ML models for predicting RF channel behavior based 

on object, geometry, and material is an area of interest for further research. 

 

Figure 2-5: Modeling Propagation Environment 

As one illustrative example, 3D models for “Conference Room Layout” are shown in 

Figure 2-5. Figure 2-5 was created using commercial LiDAR & Camera sensors, and 

3D model reconstruction software. Radio channel simulation was done using wireless 

channel modeling software. 

Generative AI Models: 
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Generative AI (GenAI) models can also be used to model statistical aspects of the 

wireless channel in a relatively lightweight way in addition to explicitly defined 

statistical channel models and full-fledged ray-tracing models. GenAI models are often 

an alternative (or complementary) to the stochastic channel models. While they are 

stochastic channel models in nature, they are typically not the explicitly defined 

stochastic channel models (e.g. TR 38.901 channels, etc.) but are learned neural 

networks which emulate the channel behavior from various data distributions. These 

models can help create a DT-RAN representing key aspects impacting wireless 

performance. GenAI models including GANs, Autoencoders, VAEs, and other such 

neural networks can be used to model aspects of signal propagation such as the power 

delay profile and multi-path fading statistics for an environment, modeling and 

reproducing the related probability distributions of a local environment with high 

accuracy. Figure 2-6 illustrates distribution matching (i.e. calibrating these GenAI 

models) from a single sector of over-the-air measurement data characterizing a 

channel impulse response in a macro-cell in Arlington, VA as compared to a 

generative autoencoder model which has been trained to accurately emulate statistical 

distributions of the aggregated channel response for one sector. Such a model can be 

trained with a relatively small volume of channel state data measurements, can 

generalize very well to the real underlying distribution, and can be used for a wide 

variety of DT-RAN applications which might not require a fully detailed spatial model 

of an area.  In other examples, similar sorts of parameter learning can also be used in 

conjunction with ray tracing, for instance to help represent numerous local objects, 

properties, and effects. 

 

Figure 2-6: Generative-AI Based Impulse Response Modeling using Digital 
Twin  

Example Use Cases:  

Use Case 1: DT-RAN for Site-specific Network Planning and Optimization 

Site-specific network planning involves leveraging detailed simulations of radio wave 

propagation for deploying network infrastructure components, such as base stations 

https://www.etsi.org/deliver/etsi_tr/138900_138999/138901/16.01.00_60/tr_138901v160100p.pdf
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and antennas, to achieve optimal coverage, capacity, and QoS in a specific 

geographical area. 

To this end, the first step is to create a high-fidelity representation of the environment 

in the DT-RAN, including detailed 3D models of buildings, streets, and any structures 

that can impact signal propagation. Then wireless ray tracing can be implemented to 

model the propagation of radio waves in the target environment. Afterwards the 

interaction of EM waves with buildings, terrain, vegetation, and other objects can be 

simulated to capture realistic signal propagation characteristics. The accuracy of the 

site-specific network planning simulations needs to be validated by comparing the 

results with real-world measurements. The calibration ensures that the simulated 

environment in the DT-RAN closely mirrors the actual propagation conditions. In 

addition, visualization tools within the DT-RAN to present site-specific planning 

insights can be developed. The visualization can be used to show signal coverage 

maps, interference patterns, and other relevant information for better decision-making.  

The ray tracing-based DT-RAN can be used for various site-specific network planning 

as well as optimization purposes, such as antenna placement optimization, frequency 

planning, capacity planning, and interference analysis. Take antenna placement 

optimization as an example. The ray tracing-based DT-RAN can be used to analyze 

how different locations and orientations of antennas affect signal coverage and quality, 

and evaluate the impact of obstacles, reflections, and diffractions on the propagation 

paths to and from the antennas. Such analysis and evaluation can be utilized to 

determine the optimal tilt angles, azimuths, and beamforming configurations for 

antennas to maximize coverage and signal quality and minimize intra/inter-cell 

interference. 

In addition, data-driven GenAI models can be leveraged to model wireless propagation 

statistics such as delay spread, doppler, angular, or interference distributions in 

aggregate from cellular measurement data, and utilized for site-specific network 

optimization.  AI/ML models within DT-RAN to simulate the PHY, MAC, and RRC, for 

example, can be simulated and optimized to tune for these channel statistics and 

spatial distributions within a sector to create locally optimized models which improve 

performance. In some applications processing stages, transmitter and receiver 

functions in portions such as Physical Random Access Channel (PRACH), Physical 

Uplink Control Channel (PUCCH), Physical Uplink Shared Channel (PUSCH), 

Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel 

(PDCCH), Physical Broadcast Channel (PBCH), or others can be optimized based on 

KPIs such as Block Error Rate (BLER), Error Vector Magnitude (EVM), SINR, etc. The 

optimization is performed in the context of these wireless channel distributions to 

maximize processing performance.  In some cases, this can further increase capacity, 

range, resilience, and efficiency of the RAN. By leveraging GenAI models to model 

channel data distributions, small and/or sparse data sets can often be extrapolated 

into smooth and complete distributions, stored compactly, shared between network 

elements such as RIC applications efficiently, rapidly used for training and simulation, 

and used across many network sectors and location to perform model management 

and optimization. In this case, RIC is envisioned as one platform which might host the 
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DT-RAN as an xApp or rApp, and provide various model optimization services such 

as the tuning of neural receivers or other signal processing functions. 

In summary, site-specific network planning and optimization, empowered by wireless 

ray tracing and GenAI models in a DT-RAN, would allow network operators and 

planners to make informed decisions about the deployment and configuration of the 

network infrastructure. It has the potential to contribute to the efficient use of 

resources, improved coverage, and enhanced overall network performance in specific 

geographical areas. 

Use Case 2: DT-RAN for AI/ML Training 

A DT-RAN with a high-fidelity wireless propagation environment model can be 

effectively utilized for AI/ML training, allowing it to learn and adapt to complex radio 

wave propagation scenarios.  

One can utilize the high-fidelity environment model to generate a diverse dataset that 

simulates a wide range of radio wave propagation scenarios within the targeted 

environment. This dataset can include variations in terrain, building structures, 

material properties, and other relevant factors. The DT-RAN can further assist in 

labeling the generated dataset with ground truth information, including expected signal 

strength, interference levels, and other relevant metrics. The DT-RAN with a high-

fidelity wireless propagation environment model provides accurate reference data for 

training the AI/ML models (such as AI/ML based CSI feedback, beam management, 

and positioning), including the ground truth against which predictions are evaluated. 

One may further integrate differentiable ray tracing techniques into the AI/ML models. 

This enables the models to learn from the simulations performed by the high-fidelity 

model and adapt their parameters based on the differentiability property. The 

integration supports end-to-end learning and optimization, where the AI/ML models 

learn directly from the high-fidelity simulations. This allows the models to capture 

complex relationships between input features and desired outcomes, facilitating more 

accurate predictions and optimizations within the DT-RAN. 

         

2.2.3 Modeling of Network Subscribers  

A typical network subscriber can be represented as a combination of a User 

Equipment, Subscription, Services and Application Data. Subscribers interact with 

network for exchanging control/user plane signaling/data. 

Network subscriber(s) for a DT-RAN can be modeled using one or more inputs 

including but not limited to: 

• Device Capability Model 

o Model capturing the capability (as defined in standards) of subscriber 

devices in terms of communication technology (Long Term Evolution (LTE)/ 

New Radio (NR)/Wireless-Fidelity (Wi-Fi)/Vehicle-to-Everything (V2X)/etc.) 

and use-case (Handheld Computing, Wearables, IoT, M2M, etc.). 
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• Traffic Model (Applications, Service, Games, etc.) 

o Pattern of the data exchanged between a device/application/service and 

wireless network can be captured as mathematical models with specific 

requirements on throughput, latency, reliability, etc. 

o Alternatively, recorded traffic sessions for specific applications, games, 

scenarios can be used as traffic model. 

  

• User Activity/Network Usage Model (Frequency, Idle/Inactivity/Activity) 

o Patterns of the user activity/inactivity, type and frequency of applications/ 

services used by the users. E.g., model can capture usage of a specific 

service (like video streaming) throughout the day, or specific days of the 

week, or any specific events (live streaming of sports/performing arts, etc.). 

o Pattern of upload/download of information from/to IoT/sensor device. 

 

• Device Density Model 

o Device density models for various use-cases as defined in standards, or as 

per operator models. 

 

• User Location/Mobility Model 

o Pattern of the user/device mobility.  

The above information can either be standards (like 3GPP [16], IEEE, etc.) driven or 

data driven (captured by network infra and/or operators). 

 

2.2.4 Modeling of End-to-End System 

The digital twin for an end-to-end wireless system consists of twins for physical 

environment, radio environment, network deployment, service deployment, network 

subscriber population (i.e., user distribution model), and KPI/Event monitors 

corresponding to the objective of a ‘What-if’ analysis, as depicted in Figure 2-7. 

Although not explicitly shown, the RAN and CN models within the network model take 

into consideration modeling of transport network as well. 

Individual models can be configured/enabled/disabled based on various factors, for 

example, the scenario under evaluation, specific use cases etc. These models can 

interact with each other at an aggregated level (as an example, for large scale 

scenarios) and/or can be following the standard 3GPP/O-RAN interfaces to interact 

with each other. 

Depending on the problem (use-case) being solved, a subset of the components of 

the digital twin can be chosen as the focal point(s) for study and can be activated in 

plug-and-play mode. Output generated from the digital twin can contain various 

functional/performance metrics as well as network state/status information which can 
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be used for further analysis of the results, deriving inferences about the impact of 

configuration on network performance. 

 

Figure 2-7: Modeling End-to-End System with Digital Twin 

Enabling Technologies: 

There are various techniques for modeling a DT-RAN. These techniques can be 

broadly categorized based on the modeling approach rather than being strictly divided 

into simulators, emulators, model-based, or data-driven categories, as these often 

overlap.  

Simulation-based Techniques:  

Simulation tools like Network Simulator (NS)-2, NS-3, and Objective Modular Network 

Testbed (OMNet++) employ detailed frameworks to mimic network behaviors. These 

simulators are highly accurate but do not operate in real-time and are often slow in 

performance estimation, which limits their efficiency in non-deterministic testing (NDT) 

scenarios [17]. 

Emulation-based Techniques:  

Emulation techniques are aimed at executing the intended applications in a controlled 

communication environment and measuring the real underlying network behavior, 

where part of the communication architecture is implemented in a real setting [18]. 

However, network emulators suffer from inefficiencies in adapting to various network 

sizes and configurations. 

Analytical Modeling Techniques:  

Different from the simulators and emulators, analytical modeling techniques directly 

establish a mathematical relationship between the influencing factors and the 

performance metrics. Conventional analytical modeling methods (e.g., network 

calculus, Queuing theory etc.) have certain inherent limitations in modeling network 



O-RAN NGRG CONTRIBUTED RESEARCH REPORT 

 <RR-2024-09>                                                                                                                                                            
37 

behavior [19]. While analytical modeling techniques are formalistic, they suffer from 

the following two major limitations: i) in complex network settings, such as ultra-highly 

dense heterogeneous networks, the model representing the system is mathematically 

intractable, and therefore a closed-form optimum or sub-optimum solution either does 

not exist or cannot be obtained, and ii) the use of simplifying assumptions might lead 

to inaccurate performance estimation, which makes the model-based techniques 

inflexible towards rapid and continuous network evolution. 

Machine Learning-based Techniques:  

Recently, driven by the advancement in the area of machine learning and abundant 

availability of data, data-driven techniques have been considered to model the network 

behavior. These techniques mainly involve learning a mapping function between the 

observations and the target output via a training process using real data, without 

making any assumptions about the underlying network. This allows to build models 

with high accuracy by modeling the entire range of non-linear and multi-dimensional 

characteristics. Figure 2-8 depicts a generic schematic process of ML-based 

techniques. For example, the works in [20]-[22] have leveraged different flavors of 

neural networks, such as the Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs) to extract information from network traffic and sequential 

dependencies of its parameters. 

A downside of traditional ML-based techniques for modeling a DT-RAN is their reliance 

on large amounts of real data for training, which may not always be readily available 

or representative of all possible network conditions. Additionally, these models, such 

as CNNs and RNNs, can be computationally intensive and may require significant 

processing power, making them difficult to scale in real-time applications. They also 

tend to operate as black-box models, offering limited interpretability, which can make 

it challenging to understand or troubleshoot underlying network behavior, particularly 

in dynamic or unpredictable scenarios. 

Real-Time and High Accuracy Modeling Techniques: 

 

Many DT-RAN use cases, e.g. DT-RAN for AI/ML training, testing and performance 

assurance, network energy saving, site-specific network optimization and network 

automation require the DT-RAN models to be synchronized with the physical O-RAN 

network in real-time. Close to real-time simulations are needed for DT-RAN to catch 

up with the real network status. This include updating the RF propagation 

characteristics for each modeled UE according to real UE’s moving positions, updating 

Figure 2-8: Data Driven Techniques, Input-Output Mapping 
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radio link adaption parameters, traffic status, RRC states and call processes, etc. 

There is a trade-off between modeling accuracy and real-time performance of the DT-

RAN. The accuracy and real-time requirement also vary with the use cases and the 

different scenarios that a DT-RAN is applied to. There is no one-size-fits-all modeling 

solution. Furthermore, for some applications requiring both real-time and high-

accuracy, the model design and implementation become extremely challenging given 

the limited computing resource and cost budget for DT-RAN compared to the real 

network, which is one of the key technology gaps to be solved by the industry before 

DT-RAN concept can be realized in real-world. 

Achieving real-time synchronization comes with significant costs, particularly in terms 

of computational demand and continuous updates. The level of real-time 

synchronization required depends on the specific application. Critical applications like 

network performance assurance or energy saving justify real-time updates due to their 

operational impact, while less demanding applications, such as long-term planning, 

can afford relaxed real-time constraints, making the trade-off between cost and 

performance more manageable. 

 

Several unique features of DT-RAN make it possible to fill this technology gap if they 

are fully leveraged: 

1. Real-time digital twin models are not truly real-time like the physical network. DT-

RAN models can reflect the truth of the physical world at a certain instant of time 

when there is an application observing the DT-RAN from outside.  

2. Digital twin model is not an all-encompassing mirror of everything happening in the 

physical network. It reflects only some selected aspects of the physical world that 

are of interest to other applications leveraging the DT model.  

3. The accuracy and real-time requirement of DT-RAN depend on its applications.  

Leveraging the above features of digital twin, potential end-to-end (E2E) modeling 

solutions can be explored. For example, as illustrated in Figure 2-9, digital twin models 

can be divided into two parts: 1) a non-real-time part including an offline RF grid 

generator and 2) a real-time part including the mobility and RF model, RAN function 

model and O-Cloud model incorporated into the O-RAN architecture.  
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Figure 2-9: E2E Network Digital Twin Modeling 

The offline RF grid generator can accurately model the large-scale RF propagation 

characteristics (e.g. signal strength, interference, angular spread etc.) at each position 

of an interested geographic area and create a RF grid map. To model the RF 

propagation environment accurately, compute-intensive technologies, e.g. ray tracing, 

can be used. The computation can be done offline which allows longer computing time 

with limited computing resource. The RF grid map can be uploaded to the mobility and 

RF model runtime. When an update of UE position is triggered by the UE mobility 

model, the RF propagation characteristics of the new UE location can be read directly 

from the RF grid map without recomputing large-scale characteristic in runtime. Some 

fast-varying small-scale RF characteristics can be modeled with statistic-based 

algorithm and added on top of the RF grid map. The high layer models can 

subsequently be updated with the latest channel measurements which trigger higher 

layer state changes. In some applications where RF modeling accuracy requirement 

can be relaxed, the number of rays to be traced in the ray-tracing model can be 

reduced, and/or some simpler RF models can be adopted, e.g. statistics-based RF 

modeling techniques or even free space path loss models, to minimize the complexity. 

 

The RAN function model replicates protocol stack behaviors of the physical network, 

e.g.  traffic scheduling, link adaption, beamforming, RLC retransmission, RRC 

configuration, mobility and handover handling etc. The model can be further divided 

into two parts- 1) The real-time part models the real-time, per-Transmission Time 

Interval (TTI) control loops in the network, e.g. traffic scheduling, link adaption, 

beamforming, RLC and Packet Data Ciphering Protocol (PDCP) etc., which normally 

happens on the user-plane, and 2) The near-real-time part models the higher layer 

control and management functions of the network, e.g. RRC configuration, mobility 

and handover management and Orchestration And Management (OAM) FCAPS etc. 

For the real-time RAN model which requires high computing resource, statistical 

algorithms which model the statistical KPI performance of the real network can be 

used instead of replicating all behavioral details of the real network in the DT-RAN at 
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a per TTI level. AI/ML technology can also be leveraged to learn the statistical behavior 

of a real network in correlation with various observed mobility and traffic conditions, 

and predict the statistics for a new condition in the DT-RAN. For the near-real-time 

RAN model, the computing resource requirement is relatively relaxed but accuracy is 

still critical. In this case, the digital twin can run the same software business logic as 

the real network to create a high-fidelity digital replica. Network function virtualization, 

containerization and user/control plane disaggregation in 5G network make it possible 

and easier to reuse the control and management plane network implementation in the 

DT-RAN to create a realistic replica and keep it synchronized with the real network.  

 

Graph Neural Network (GNN)-based DT-RAN Modeling: 

While traditional ML techniques (non-relational) have been successful in domains 

other than wireless network modeling (such as computer vision and natural language 

processing), they still fall short when it comes to modeling the intricate dynamics of 

wireless networks. This is primarily related to the fact that wireless networks usually 

have a lot of topological uncertainty. This can be attributed to a wide range of reasons 

including UE mobility, traffic demand, network heterogeneity, etc. Relying only on the 

traditional ML-based techniques to model such dynamics necessitates the collection 

of a large amount of data from real networks to ensure that the model is trained on 

several corner cases as well. Collecting such a vast amount of diverse data from real 

networks is extremely difficult. Therefore, the generalizability and scalability of such 

techniques are challenging in wireless network. Importantly, traditional ML techniques 

are developed under the assumption that the data is in Euclidean space. In wireless 

networks, however, the data is mainly in non-Euclidean space. Therefore, traditional 

ML techniques may not be a good fit for modeling of wireless networks, which 

motivates the consideration of graph-based techniques for modeling of network digital 

twins. 

Graph Neural Networks (GNN) [17] leverage the underlying graph structure of the real 

networks to address the shortcomings associated with the traditional ML techniques. 

GNN-based techniques allow to store node-level hidden states and update them at 

each iteration. The update process considers the underlying dependencies of different 

elements of a network.  

Connectivity in GNN is represented via an adjacency matrix and the prediction tasks 

that can be performed are divided into graph-level prediction tasks, node-level 

prediction tasks, and edge-level prediction tasks.  

• In graph-level tasks, the goal is to predict the property of an entire graph, which 

is analogous to the process of labeling images, or sentiment analysis of a text.  

• In node-level tasks, the objective is predicting the identity or role of each node 

within a graph, similar to the task of image segmentation or speech prediction. 

• Finally, edge-level tasks perform predictions for the links of the GNN graph. 

GNN-based techniques operate with permutation-invariant modeling principles 

implying they can handle different rotation variants of the same network topology. 
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Such capability allows working with data in non-Euclidean space, which represents 

wireless domain applications more accurately. Consequently, the model requires 

lesser data and parameters to train, adding to its generalizability and scalability in 

networking applications. Network heterogeneity is another challenge in traditional ML 

techniques that demands for a complex model, which in the case of GNN, is natively 

handled. This further adds to the flexibility of using GNN as a technique for network 

digital twin modeling. 

Indeed, ML techniques like Multi-Layer Perceptron (MLP) and CNN are designed for 

image-processing tasks and are not tailored to wireless networks. In general, MLPs 

and CNNs offer good performance on small-scale networks but they suffer from poor 

generalizability and scalability. To improve the scalability and generalizability of DTN, 

the key idea in GNN is to incorporate the structure of the target task (e.g., prediction 

of link-quality) into the neural network architecture. The main benefit of GNNs as 

compared to other Deep NNs is the ability to generalize to different problem scales. 

For example, one can train the GNNs on small-scale problems and apply them to 

problems of larger scale. For example, for a beamforming problem, a GNN trained on 

a network with 50 users can achieve near-optimal performance in a larger network 

with 1000 users [24]. In general, the required number of training samples for GNNs is 

much smaller than that for MLPs. 

In the literature, GNNs have already been proven as an effective technique for RAN 

use cases. In [25], a Deep Reinforcement Learning (DRL) solution is proposed that 

uses the underlying O-RAN architecture graph to learn the weights of the GNN for 

optimal user-cell association. In the paper, UEs are represented by nodes and the 

quality of the wireless links is given by the edge weights. GNN is used in [26] for 

modeling radio propagation in wireless networks. In their approach, the GNN nodes 

correspond to locations and the edges represent spatial and ray-tracing relationships 

between these locations. [27] uses a generalizable GNN-based technique to solve the 

problem of 5G RAN/MEC slicing and admission control in metropolitan networks. The 

authors claim that the GNN approach converges faster than comparable DRL 

methods. 

The aforementioned benefits and the existing literature make GNNs a key enabler for 

modeling DT tasks in RAN. GNNs as enabler of DTN is also reflected in the latest ITU 

AI/ML challenge which focuses on building DT based on GNNs using dataset from a 

real network. However, despite the empirical successes, the design guidelines still 

remain vague, which may hinder the practical implementation of GNN based DTN. 

Hence, more research in this area is encouraged. 

GNNs have become increasingly crucial for modeling complex network structures, 

such as in the creation of DT-RAN. The effectiveness of GNNs hinges on a suite of 

enabling technologies and methodologies that ensure efficient data handling, 

computation, deployment, and algorithms efficiency [17]-[19]. 

Data handling: 

Graph databases are integral to GNN modeling, offering an efficient way to manage 

graph-structured data. Their design is specifically aimed at meeting the needs of 

https://challenge.aiforgood.itu.int/match/matchitem/82
https://challenge.aiforgood.itu.int/match/matchitem/82
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network data, which is inherently graph-based, making them ideal for GNN 

applications. These databases excel in representing data as nodes and edges, 

reflecting how GNNs process information. This capability is crucial for modeling 

complex networks, where relationships are as significant as the entities. Graph 

databases handle intricate and dynamic network relationships well, efficiently 

managing complex interconnections found in various real-world networks such as 

social, biological, and telecommunication systems [20]. 

These databases boast specialized query languages and excel in traversal 

performance, enabling efficient data retrieval and analysis of interconnected data. This 

feature is particularly useful in applications requiring rapid network traversal, like real-

time recommendation systems. The data handling methods of graph databases align 

closely with GNN model requirements, allowing straightforward and efficient data 

feeding without extensive restructuring. They can dynamically update network data, 

which is crucial for applications like fraud detection that rely on real-time data. Graph 

databases scale effectively with network size. Moreover, they are optimized for 

operations commonly performed in GNNs, enhancing data retrieval and pre-

processing efficiency. Graph databases are vital in GNN modeling, offering an 

optimized, efficient system for managing graph-structured data, which is crucial for 

effective and accurate network modeling. 

Graph Data Management/Processing is essential in preparing data for GNN modeling, 

involving multiple steps to convert raw data into a structured, usable format for 

accurate network modeling. This process includes 1) data cleaning to eliminate 

inaccuracies and irrelevant information, and 2) data transformation, where data is 

represented as nodes and edges to reflect entities and their relationships. A significant 

challenge is to accurately map real-world relationships into a graph structure. 

Normalization is another critical step, standardizing variables to ensure no single 

feature disproportionately affects the model behavior. Data integration is complex yet 

vital, combining data from varied sources into a unified graph structure. These steps 

collectively assure the quality of the data, ensuring it is clean, structured, normalized, 

and integrated. The accuracy of data representation in graph format is critical for the 

GNN's ability to model network characteristics correctly, as any misrepresentation can 

lead to inaccurate predictions.  

Computation: 

Computation efficiency is pivotal in GNNs, given their application in modeling complex 

and often large-scale networks. Enhancing this efficiency centres around minimizing 

computational demands and accelerating training and inference processes. One 

fundamental approach is parallel processing, where computational tasks are 

distributed across multiple processors or cores. In GNNs, this entails distributed 

training across several machines or Graphics Processing Units (GPUs), beneficial for 

extensive graph datasets where training on a single machine would be inefficient. 

Additionally, batch processing allows for simultaneous handling of multiple data 

samples, significantly speeding up both training and inference phases [21]. 
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Another crucial aspect is GPU acceleration, which aligns well with GNNs due to its 

inherently parallelizable nature. GPUs, with their multitude of efficient cores, are adept 

at handling the matrix and vector operations common in GNN computations. They 

excel in performing fast matrix operations, a frequent requirement in GNNs, and their 

substantial memory bandwidth is vital for managing large datasets and models. 

Alongside hardware acceleration, optimizing GNN architecture is also a key. This 

includes designing lightweight yet effective models, optimizing individual layers (such 

as using sparse rather than dense matrix operations), and integrating advanced 

algorithms that reduce computational complexity without sacrificing learning capacity. 

Other strategies like model quantization, which reduces the precision of parameters, 

and model pruning, which eliminates non-essential model components, further 

streamline computation. These comprehensive approaches in hardware utilization, 

architectural refinement, and algorithmic innovation collectively empower GNNs to 

efficiently process complex, real-world network data, broadening their applicability 

across various domains. 

Deployment: 

The deployment strategy for GNN models is vital, as it greatly influences their 

performance and suitability for various applications. The decision to use cloud 

computing, edge computing, or a hybrid of both hinges on factors like network system 

requirements, data characteristics, and desired outcomes. Cloud computing offers 

substantial computational resources, storage, and scalability, making it ideal for 

complex GNN models and large data volumes. It provides high scalability, centralized 

management, and advanced analytics tools. However, its limitation with latency can 

be a drawback for real-time data processing needs. 

Edge computing, on the other hand, processes data close to its source, such as IoT 

devices, which is beneficial for GNN models requiring immediate insights or operating 

under limited connectivity. This approach minimizes latency, supports real-time 

processing, and optimizes bandwidth usage by reducing data transfer to the cloud. 

The trade-off here is the relatively low computational power and storage capacity 

compared to cloud platforms. The hybrid approach merges the strengths of both cloud 

and edge computing, allowing data processing both locally and in the cloud. It 

combines edge computing's speed with the cloud's power, offering flexibility and 

scalability. This method also enhances security and reliability by distributing 

processing. However, the hybrid model's complexity in implementation and 

management requires careful planning and coordination for efficient operation. 

Algorithm efficiency: 

The efficiency of algorithms in GNN modeling is crucial for handling complex networks 

effectively and practically. This efficiency has been significantly boosted by the advent 

of open-source libraries, which provide pre-built and optimized algorithms for GNNs. 

Libraries like PyTorch Geometric, Deep Graph Library (DGL), and TensorFlow 

Graphics offer a suite of tools and algorithms, including optimized implementations of 

standard GNN architectures like Graph Convolutional Networks (GCNs) and Graph 

Attention Networks (GATs). These resources enable developers to avoid the intricate 
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process of coding these models from scratch, leading to a faster and more reliable 

development cycle [23]. 

Various techniques further enhance the efficiency of GNNs. Graph sampling methods 

like node, layer, and subgraph sampling reduce computational complexity, making 

training on large networks more manageable. Parallel processing, leveraging modern 

GPUs and Tensor Processing Units (TPUs), expedites data processing and model 

training. Optimizing message-passing algorithms, a core component of GNNs, also 

boosts performance by minimizing computational overhead. Additionally, model 

pruning, and compression techniques reduce the size of GNN models, maintaining 

performance while cutting down on computation and memory usage. Transfer 

learning, using pre-trained models on similar tasks, saves resources and reduces the 

computational burden by requiring minimal additional training. 

Efficiency in GNN modeling is also achieved through architecture optimization, 

customizing network structures to align with specific data characteristics and tasks. 

This includes tailoring layers, activation functions, or the entire network design, leading 

to more efficient models. By integrating open-source libraries with these efficiency-

enhancing techniques, GNN modeling becomes not only more efficient but also more 

adaptable to various applications. This combination enables the creation of powerful, 

computationally manageable GNN models, adept at tackling the complexities of 

network data analysis and prediction. 

In summary, to enable GNN modeling for DT, the integration of data handling, 

computational efficiency, deployment strategies, and algorithmic improvements is 

crucial. Graph databases ensure GNNs receive accurate, structured data, while 

computational efficiency is boosted through techniques like parallel processing and 

GPU acceleration. Deployment strategies are tailored to specific needs, balancing 

power, and speed. Algorithmic efficiency, enhanced by open-source libraries and 

optimization methods, streamlines GNN modeling. Together, these elements ensure 

GNN models are not only powerful but also adaptable, crucial for creating effective 

DTNs for a wide range of network analysis and prediction tasks. 

Example Use Case: 

Use Case 1: GNN for Network Energy Efficiency in DT-RAN 

With the rise of AI/ML approaches for optimization, deriving strategies that enhance 

network operations without disrupting real-time processes is becoming increasingly 

important. In this context, DT-RAN, a digital replica of physical RAN, serves as a 

powerful tool for testing and validating various strategies before they are applied to 

real networks. DT-RAN allows for planning and forecasting the resource usage to 

identify under-utilized network resources that can be shut down or re-purposed to 

reduce energy consumption. DT-RAN can potentially help in achieving substantial 

network energy saving driven by a combination of environmental, economic, and 

operational factors. It can model the impact of various network energy saving 

strategies on the network performance using a virtual representation of the network 

topology, dynamics and operational behavior to arrive at optimal models and 
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thresholds without compromising the end-user QoS. However, maintaining the right 

balance between end-user’s QoS and network energy saving is quite challenging and 

intractable from an analytical perspective, in a dynamic, heterogeneous, and large-

scale RAN.  

To address such challenges, data-driven techniques such as MLPs and CNNs have 

been considered. These techniques, while quite successful in other domains, 

however, can only address either localized issues or apply to small-scale wireless 

networks. There is, therefore, a need for methods that can inherently exploit the 

wireless network topologies and can scale and be generalizable for large cellular 

network resource management aspects. 

As shown in Figure 2-10, the key principle in GNN is graph embedding, which involves 

taking each node and its neighbours’ features and encoding them into a vector 

representation (embedding) using a permutationally invariant process. This means 

that the order of nodes in the graph does not affect the embedding, ensuring that the 

resulting vectors accurately capture the relationships and features of each node within 

the graph. In RAN use cases, the nodes are the network elements, such as user 

equipment, base stations, etc. and the edges are the communication links among 

them.  Once the node embeddings are obtained, they can be used in downstream 

tasks in xApps and rApps for specific network optimization goals such as reduction of 

energy consumption while maintaining the target QoS requirements. By analyzing 

these embeddings, network operators can make informed decisions to optimize 

resource allocation, improve network performance, and enhance overall efficiency. 

Additionally, these embeddings facilitate more accurate predictive modeling and 

anomaly detection, further enabling proactive management and optimization of the 

network. 

As shown in Figure 2-11, a trained GNN is leveraged to model the relationship among 

the network elements in DT-RAN. The goal is to use GNNs to model the behavior of 

the network elements for any changes in the network and evaluate their impact on the 

overall network energy consumption and QoS without risking degradation of the real 

network. The DT-RAN as a virtual replica of RAN, receives real-time network data. 

Such data is composed of the current state of the network both at the component-level 

and at the network-level. The DT-RAN constructs the network’s graph using that data. 

The network graph can be used by network operators to evaluate various ‘what-if’ 

scenarios for actuation of the Network Energy Saving (NES) strategies and to 

 

Figure 2-10: Graph Embedding using GNN 
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ascertain their impact on overall network energy consumption and target QoS 

requirement. Such ‘what-if’ scenarios include changes in network topology, UE traffic 

demands, routing, scheduling, UE association, admission control, handover, etc. For 

instance, by simulating these scenarios, operators can predict how different 

configurations affect energy usage. This approach helps identify opportunities for 

optimizing network operations, such as reducing redundant transmissions, minimizing 

idle times, and adjusting resource allocation dynamically. Through effective analysis 

of these scenarios, operators can make informed decisions that reduce energy 

consumption while maintaining or even enhancing network performance, leading to 

significant energy savings. The network graph at this stage, can be as complex as the 

actual RAN, reflecting the intricate interactions between network components. 

Furthermore, these scenarios can vary in complexity, allowing for different levels of 

granularity within the network graph to be explored. 

 

Figure 2-11: GNN for Network Energy Efficiency in DT-RAN 

The GNN processes the network configuration incorporating the 'what-if' scenarios 

and produces network energy consumption data, along with other QoS metrics, 

including network flow-level statistics, link-level statistics, and network throughput. 

This information can be utilized in both near-real-time applications (xApps) and non-

real-time applications (rApps) deployed on the RIC, following the O-RAN architecture. 

Alternatively, if DTN techniques are employed, the GNN model can be directly 

embedded within xApps or rApps. This integration allows xApps and rApps in the RIC 

to issue informed control commands to the RAN, ensuring that the target QoS is 

maintained. These control commands may include cell/carrier switch off, sleep modes 

commands, network load balancing, as well as RF module configuration. 
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2.2.5 Radio Spectrum Awareness and Emitter Activity Modeling  

As useful radio spectrum is an incredibly scarce resource that must be re-used and 

shared efficiently within and between networks in many cases, awareness of 

emissions and spectrum activity is becoming increasingly important to enable efficient 

intra-network operation and optimization as well as inter-network and inter-technology 

coordination and optimization. To this end, DT-RAN should optimally employ efficient 

spectrum awareness technologies distributed across various network elements in 

order to enable intelligent monitoring, adaptation, and reaction to a broad range of 

spectrum activity in order to facilitate better use of the spectrum through increased 

spectral efficiency and spatial re-use. By detecting emitters, and localizing within the 

DT-RAN model, we can track where emitters are, and what interference they may be 

generating from which propagation paths. This could be used to help with training or 

testing network functions such as scheduling, beamforming, beam nulling etc. to work 

well in the presence of other emitters, Electromagnetic Interference (EMI), or objects 

in space which are contending for the spectrum. In addition to improving spectral 

efficiency, this can help to automate operations, streamline OAM and fault diagnostics 

within networks, mitigate security threats and interference, and help to enable a 

deeper awareness of activity in the physical world in ISAC related next generation use 

cases. By tracking RF emitters, power levels, MIMO channel statistics, localization 

estimates, access times statistics, and other statistics within the DT-RAN from one or 

more network elements, a rich set of models can be built to help represent the behavior 

of the interferers, nearby networks, and nearby activity. This can be used by xApps 

and other services to help optimize how spectrum is allocated, how beams, nulls, and 

frequency sub-bands are scheduled, and to help avoid or operate through network 

degradation or known sources of interference or adjacent networks. Furthermore, this 

may be a fundamental enabler of future shared-spectrum band access strategies, 

helping to inform future Citizen Broadband Radio Service Spectrum Access System 

(CBRS SAS) like sharing orchestrators with rich and detailed information about 

spectrum access and propagation, leading to better and more efficient heterogeneous 

re-use in complex and dense environments. 
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Figure 2-12: RAN Digital Twin Localization of Non-Network Emitters, Arlington 

In one example shown in Figure 2-12, we illustrate how gNBs can help to detect and 

localize sources of EMI and unauthorized or out-of-network gNBs which are co-

existing in an FR1 spectrum band.  Here, knowledge of these devices from sensing 

events from each sector can be used and combined within the RIC based DT in order 

to help localize and trigger detailed alerts to operators, and to enable base stations to 

track the interferers in order to help simulate and mitigate interference through spatial 

processing, cancellation, and resource allocation. 

Enabling Technologies: 

Machine learning, and specifically deep learning have completely transformed what is 

possible in the realm of spectrum sensing. Leveraging similar techniques to those of 

object detection and tracking in the visual domain (e.g., which have enabled self-

driving cars, drones, and numerous forms of visual autonomy), many of these same 

technologies can be adapted to work on complex valued radio signals and spectrum 

to help enable very low cost, low power, low latency, and highly adaptable data-driven 

sensing for a wide range of types of emitters and phenomena with very high accuracy 

and sensitivity. Figure 2-13 below illustrates one such software capability, passively 

detecting various 4G and 5G emitters in band, along with channel statistics from short 

sub-millisecond observations to help inform DT-RAN RF Emitter maps using compact 

and descriptive structured data, which can be efficiently and compactly passed over 

interfaces to xApps, rApps, or other network elements.  

As these machine learning models for sensing are natively data-driven, they can be 

rapidly retrained on many types of communication emitters including cellular, IoT, and 

Wireless Local Area Networks (WLAN) type emitters as well as non-communications 

EMI, radar, and wireless phenomena. This allows for rapid out-of-distribution or 

anomaly detection, curation, and retraining on new data and models and deployment 

of new sensing capabilities to the edge at network elements or RIC applications, to 
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improve spectrum awareness under new conditions.   As embedded and mobile silicon 

is increasingly employing neural network acceleration hardware such as Neural 

Processing Units (NPUs), Data Processing Units (DPUs), AI-Engines, GPUs, Matrix 

extensions, etc., these models are increasingly able to be deployed to edge network 

elements such as O-RU or O-DU elements with minimal cost, operation, and network 

impact or cost to vendors or operators, making this increasingly appealing for 

deployment. 

 

Figure 2-13: Wireless Spectrum Awareness Software Running over the Air  

Example Use Case: 

Use Case 1: DT-RAN based Spectrum Awareness 

Numerous types of nearby RF emitters can impact RAN performance and are key use 

cases to be enabled by deploying DT-RAN based spectrum awareness. These 

emissions include: 

• Detecting electromagnetic interference, jamming, or other emitters that may cause 

degradation in RAN performance or disruptions in coverage, requiring mitigation, 

avoidance, or enforcement actions to clear spectrum. 

• Detecting and monitoring unauthorized devices, physical layer attacks, or other 

types of security threats which may be operating on the air interface.  

• Enabling future shared spectrum bands, by helping to identify usage and signal 

strength and channel statistics of adjacent networks, helping to orchestrate more 

efficient and dense re-use without degrading performance. 

• Enabling efficient operating in unlicensed bands such as for New Radio-Unlicensed 

(NR-U), Private 5G deployments or related future technologies by identifying 
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emitters of various technologies, spatial and power statistics of emitters, and by 

helping to coordinate and mitigate interference between elements. 

For many of these use cases, the DT-RAN may store representations of the events, 

emitter information, location, power level, and spatial statistics of emission events, and 

may use these in combination with various channel or propagation models including 

those discussed in Section 2.2.2 to help inform a decision about spatial processing, 

scheduling, band assignment, etc. Numerous automated responses or reactions can 

then be deployed within the RAN such as:  

• Spatial reactivity: Reacting to trigger additional spatial processing to reduce 

interference or effects on the RAN such as by steering beams, nulls, resources, or 

other effects. 

• Processing reactivity: Leveraging additional processing stages to mitigate 

interference, for instance by further training receiver components in the presence 

of various types of noise or interference to improve performance. 

• Enabling feedback: Actively communicating between network elements within the 

network, between networks, or between network orchestrators such as future SAS 

services in order to help reduce interference in certain bands, spatial modes, 

channel access modes, power levels, or antenna configurations. 

• Analytics: Enabling new use cases through real time information and analytics of 

RF emitter behavior and movement in the physical world, emitter locations or 

behaviors, or reflector behaviors or movements which may be extracted through 

processing of channel statistics. 

  

2.3 Computing  

As RANs are evolving towards increased heterogeneity, dynamicity, and complexity, 

it is natural that the DT-RANs require advanced technical capabilities to faithfully 

replicate the physical network traits in the virtual domain [28]. To enable seamless 

synchronization between a DT-RAN and its physical counterpart, fast and efficient 

processing capability is essential, which calls for accelerated computing that ensures 

a proactive response of digital twins to any change or event occurring in the underlying 

real networks.   

 

2.3.1 Accelerated Computing  

Accelerated computing is a specific style of computing, where data-intensive part of 

an application is processed on a specialized acceleration device that can speed up 

the processing capability, usually utilizing the parallel processing capability of several 

tasks simultaneously, instead of in a linear or serial fashion as is usually done in 

traditional general-purpose processing. As mentioned in the previous section, DT-

RANs are poised to harness the power of AI/ML techniques for enhanced decision 

making and predictive analysis capabilities. Accelerated computing is crucial in aiding 
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faster execution of training and inferencing of AI/ML models running in DT-RANs [29]. 

6G networks will be dynamic, and it is anticipated that online training for AI/ML models 

will be crucial. One example is Deep Reinforcement Learning based models, where a 

neural network embedded in the DRL agent undergoes continuous updates in 

response to the dynamic environment. Latency is important here and hence the 

training and inferencing speeds are crucial. Accelerated computing is essential in 

ascertaining the demanding training/inferencing time for these DT-RAN models [5]. 

The emerging application landscape of 6G is diverse, proliferated by new technology 

enablers like integrating communication with LiDAR/RADAR sensing, RIS utilizing 

enormous antenna arrays and advanced beamforming techniques and Terahertz (THz) 

frequency communication. Supporting physically accurate radio wave propagation 

modeling in DT-RAN to mimic the network behavior for these wide range of 

technologies with high-fidelity requires sophisticated tools like ray tracing, as explained 

in Section 2.2.2. Ray tracing at-scale is exceedingly computationally intensive, and 

accelerated computing is vital in supporting ray tracing-based channel modeling in DT-

RAN [5].  

It is evident that DT-RANs will be fueled by massive amount of data, either collected 

from various physical sources (like sensors, IoT devices and network elements), or 

generated through simulation [30], as explained in Section 2.1. The handling and 

processing of this large volume of data and deriving analytical insights for live network 

entails accelerated computing as an essential tool for DT-RAN. Time-sensitive use 

cases like anomaly/fault detection require near-instantaneous response time from DT-

RAN to the underlying physical network. Advanced computing capabilities contribute 

to minimizing latency in response time, enabling DT-RAN to provide prompt and timely 

feedback to the physical networks and alleviate the risks of network downtime. The 

modularity of digital twins representing a physical network can vary depending on the 

underlying network deployment topology. For example, instead of being centralized, 

DT-RAN can be distributed across multiple edge devices and cloud infrastructure. 

Accelerated computing aids in efficient distributed computing, enabling digital twin 

models to seamlessly interact with various parts of the network in real-time and share 

feedback across the network [31]. As the emerging technologies are focusing more 

and more on sustainability, there is no doubt that the approach towards green 

communication will shape the deployment landscape for 6G networks. At that juncture, 

energy efficient computing is paramount to the proliferation of digital twin technology 

in the telecommunication domain [32]. Accelerated computing technologies can help 

optimizing energy consumption of digital twins and achieving the goal of minimizing 

digital twin’s carbon footprint.   

To summarize, the combination of increased complexity, real-time requirements, 

massive data processing, integration of AI, distributed computing, low latency 

demands, highly scalable modeling and energy efficiency considerations cumulatively 

contribute to the need for accelerated computing in digital twins for the next generation 

RAN. 

Enabling Technologies: 
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Technologies enabling accelerated computing in DT-RANs can be broadly 
categorized into two buckets – 1) hardware-centric tools and 2) software-centric tools. 
Optimized handshaking between these two brings in the best-in-class performance 
and enhanced efficiency in the twin domain. Following are the set of accelerated 
computing tools that can improve the efficiency and performance of DT-RANs.  
  

Acceleration Hardware and Software:  

Programmable hardware accelerators like GPUs, with their massive parallel 
processing capability are highly efficient in accelerating real-time simulation, analytics, 
and processing of AI/ML workloads. Tensor core enabled GPUs are specifically 
designed to offer mixed-precision computing and in turn, acceleration of AI/ML model 
training and inferencing. With GPU acceleration, the development and deployment of 
AI/ML models in DT-RAN can be significantly faster. GPUs excel at handling data-
intensive tasks, making them suitable for analyzing and deriving meaningful insights 
from massive and complex datasets.   
Software programming environments (including Application Programming Interfaces 
(APIs) and programming frameworks) designed for parallel processing can simplify 
the development of GPU based DT-RAN models. Examples include Compute Unified 
Device Architecture (CUDA), Open Computing Language (OpenCL), Open 
Accelerators (OpenACC) and Open Multi-Processing (OpenMP). These tools help 
AI/ML algorithm developers/programmers to exploit parallelism in their code and 
efficiently utilize the compute capabilities of software-defined accelerators. GPU-
accelerated software libraries facilitate DT-RAN model development that can take full 
advantage of accelerated computing resources. Examples of software libraries 
optimized for AI/ML based models and algorithms development include CUDA Deep 
Neural Network (cuDNN), DeepStream Software Development Kit (SDK), TensorRT, 
etc. Alongside, optimized software libraries for linear algebra (including CUDA Fast 
Fourier Transform (cuFFT), ArrayFire, Matrix Algebra for GPU Multi-core Architecture 
(MAGMA), CUDA Math library, and CUDA Basic Linear Algebra Subroutine (cuBLAS), 
among others) can provide further computation acceleration involving parallelizable 
mathematical operations associated with various algorithms running during the 
complex simulations of DT-RAN.   
While programmable hardware accelerators aid acceleration of versatile workload 
processing in DT-RAN, specialized hardware accelerators that are custom-made for 
specific workload acceleration can be useful for targeted tasks in DT-RAN. As one 
example, Deep Learning Accelerator (DLA), a fixed-function inference accelerator 
tailor-made for processing neural network workloads can be used for accelerating 
deep learning operations in DT-RAN. Other examples of AI accelerators include 
Tensor Processing Unit (TPU), Field Programmable Gate Array (FPGA), Application-
Specific Integrated Circuit (ASIC) and System-on-Chip (SoC). High Level Synthesis 
(HLS) tools enable design, optimization, and implementation of these custom 
hardware accelerators.  
 
Multi-GPU Scaling and High-performance Compute:  

System level simulation is an integral part of DT-RAN, and its compute requirement 
can vary over a wide range of scales – all the way from the simulation for a specific 
network site to the massive, city-scale simulation. Compute scalability, therefore, is an 
essential trait for DT-RAN. Leveraging the principle of parallelism in GPU, various DT-
RAN workloads (e.g., data processing, analytics, simulation, complex model training 
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and inferencing) can be parallelized and distributed across multiple GPUs 
simultaneously – an acceleration approach known as multi-GPU scaling. Utilizing 
multi-GPU scaling can significantly increase the processing capability of DT-RAN and 
can be beneficial for processing large datasets and intricate simulations at a faster 
pace. For DT-RAN modeling and simulation at city-scale, High Performance 
Computing (HPC) systems with clusters of powerful processors and accelerators 
(including GPUs) can provide exceedingly high-speed processing capability and 
enormous computational power needed for highly complex modeling, real-time 
optimization, and Faster-Than-Real-Time (FTRT) simulation. 
   
Cloud Compute: 

DT-RAN operates in a dynamic environment and its compute need varies over time. 
While scalability is one important aspect of accelerated computing in DT-RAN, the 
other essential trait is the flexibility in provisioning accelerated computing resources 
on an ‘as-needed’ basis, to make the DT-RAN not only compute efficient, but also 
resource and energy efficient. DT-RAN deployed on a cloud platform offers that 
flexibility and scalability, by allowing the accelerated computing resources such as 
GPU instances to be provisioned ‘on-demand’ and thereby, offering agile and dynamic 
scaling of computational capacity based on the requirements of DT-RAN workload.  
 
Distributed/Edge Compute: 

For mission critical applications with stringent latency requirements, DT-RAN’s 
response time needs to be of low latency. Enabling centralized accelerated computing 
for DT-RAN (for example, at near edge) may not be adequate in meeting the time 
budget for latency-critical simulations. Edge computing alleviates this issue by bringing 
computation resources closer to the data source, thereby reducing latency in data 
transfer, and enabling real-time processing. Deploying accelerated computing tools 
(e.g., hardware accelerators) closer to the edge enhances both compute speed and 
low-latency responsiveness of DT-RAN. 

 

Example Use Cases: 

Use Case 1: DT-RAN for Site-specific Network Planning and Optimization  

As mentioned before, ray tracing is an integral part of DT-RAN for enabling physically 

accurate model of radio wave propagation environment, which is essential for site 

specific network optimization. Making at-scale RF ray tracing a reality requires 

programmable hardware accelerators supporting the essential mathematical 

operations acceleration for ray tracing and optimized software libraries for 

implementing the ray-tracing pipeline. As one example, application frameworks like 

OptiX can be used to exploit the accelerated computing offered by RTX GPUs and 

achieve optimum ray tracing performance for DT-RAN RF environment modeling [5].  

Use Case 2: DT-RAN for Network Automation  

An important aspect of network automation is enabling zero-touch networks, which is 

capable of self-healing and adjustments based on autonomous analysis of network 

data and activity. Predictive analysis and anomaly/fault detection are essential traits 
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of zero-touch networks.  Accelerated computing empowered DT-RAN can offer fast 

and efficient simulation, root-cause analysis, and fault-correcting actions with low-

latency response time, enabling on-time auto-remediation to the anomalies of the 

underlying physical network. 

 

2.4 Visualization & Trustworthiness Management 

Visualization is the bridge between the internal complexities of a DT-RAN and the 

user. It enables users to interact with the digital twin model and understand its 

outcomes. Visualization also aids as one of the important tools in monitoring the DT-

RAN and ensures its trustworthiness over long run.  

 

2.4.1 Visualization 

A typical DT-RAN will generate an enormous volume of large-scale network data, and 

this data will be characterized by its size, dimension, and heterogeneity [28]. The 

industry has always relied upon simple tools such as interactive dashboards and 

charts to visualize the operations of the RAN. This is now complemented, for the DT-

RAN, by a new set of high-end graphics such as 3D models and Augmented Reality / 

Virtual Reality (AR/VR). High quality visualization brings the DT-RAN to life, enabling 

users to understand, monitor, analyze and interact with the underlying complexities of 

the DT-RAN models. This is necessary to support decision making, collaboration 

among co-workers, predictive analysis, training, optimization, and maintenance. 

Enabling Technologies: 

Broadly speaking, visualization tools and technologies for the DT-RAN can be split 

into five main groups. These can be used individually, or more commonly, combined 

to provide a visual interface for the DT-RAN. When used in a real RAN, these tools 

visualize the actual performance data from the RAN and helps the operator to monitor 

or manage the performance of the network. For the DT-RAN, the tools visualize the 

synthetic performance data of the DT-RAN to help the user to understand the 

underlying performance of the digital twin. 

Performance Metrics Dashboards:   

Performance metrics dashboards typically provide discrete information about the 

status or performance of different parts of the DT-RAN such as latency, throughput, 

packet loss, and jitter [33]. These dashboards display real-time and historical data 

from network elements for all or selected parts of the DT-RAN in a visually interactive 

format. Dashboards are primarily used for performance monitoring by providing at-a-

glance information, e.g., to keep track of wireless channel conditions above a given 

threshold. They are also used for fault/alarm monitoring with display alerts, 

notifications, and alarms, e.g., to alert when wireless channel conditions deviate from 

acceptable levels. Dashboards help users of the DT-RAN to quickly identify and 

respond to network issues, failures, or security breaches, minimizing downtime and 

service disruptions. 



O-RAN NGRG CONTRIBUTED RESEARCH REPORT 

 <RR-2024-09>                                                                                                                                                            
55 

 

Graphs, Charts and Heatmaps: 

These provide an enhanced visualization of continuous information from the DT-RAN, 

enabling the user to visualize network traffic patterns, congestion, and bandwidth 

utilization across different parts of the network [34]. Graph/charts show trends, 

patterns, and relationships within the data and can be used to convey different types 

of information such as temporal trends, distributions, and correlations. Heatmaps use 

colour coded charts to represent the intensity or density of data across a spatial or 

temporal domain. An example is the traffic heatmap which shows areas of high or low 

traffic intensity in a DT-RAN environment, helping users identify bottlenecks, optimize 

routing, and allocate resources more effectively.  

  

Network Topology and Flow Analysis Maps: 

Network topology and flow analysis maps show the layout and structure of the 

components of the network and how data flows through these components [34]. The 

topology map is a visual representation of the network showing the components (e.g., 

cell site, user devices), connections, and relationships between components of the 

DT-RAN. The flow analysis map visualizes network traffic flows and traces the path of 

data packets as they traverse the network. By tracing the path taken by data packets 

from source to destination (including cell handovers), the user can understand the 

route for data packets, highlighting intermediate hops, latency, and potential points of 

congestion. 

 

Geospatial Visualization:  

Geospatial visualization techniques use realistic or virtual digital maps to represent 

spatial data and linkages in the DT-RAN [35]. They overlay network data onto 

geographic maps or satellite imagery, providing spatial context for network 

infrastructure deployed across different locations. Maps include GIS (Geographic 

Information System) overlays, satellite imagery, or 3D terrain models for particular 

geographic terrain where the DT-RAN which is being simulated is located. Maps can 

be combined with other visualization techniques, such as charts and graphs, to create 

predictive simulations of future scenarios, what-if analysis, or interactive simulations 

that allow users to control inputs and observe the outcomes for a DT-RAN [38]. 

Geospatial visualization is particularly useful for distributed networks, such as DT-

RAN modules spanning across multiple sites.  

 

High-end Graphics: 3D Models and AR/VR: 

High-end graphics such as 3D models and AR/VR enable immersive visualization 

experiences for exploring and interacting with the DT-RAN [36][37]. 3D models use 

computer graphics to create a visual three-dimensional representation of the DT-RAN, 

and the spatial context for its operations. Many off-the-shelf visualization tools for 

digital twins use 3D models to create a virtual replica of the physical object or system. 

With AR, network data can be overlaid onto the physical world while with VR, a fully 

immersive virtual world environment is created for the DT-RAN to simulate network 
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behaviors, protocols, and scenarios in real-time or offline mode [36]. 3D, AR and VR 

models can be built with the Universal Scene Descriptor (USD), an open and 

extensible framework for describing, composing, simulating, and collaborating on 3D 

computer graphics data [39]. High-end graphics visualization is suitable for training, 

design reviews, or collaborative decision-making. For the DT-RAN, users can 

visualize the effects of changes to network configurations, traffic patterns, or routing 

protocols and assess their impact on network performance and reliability. 

 

Example Use Case: 

Use Case 1: DT-RAN for Network Performance Prediction 

In a DT-RAN system-level simulator that scales to hundreds of base stations and tens 

of thousands of mobile users, visualization provides the user interface to interact with 

the DT-RAN to benchmark network efficiency, perform ‘what-if’ analysis under realistic 

conditions, and better understand the outcome of DT-RAN’s simulation and 

evaluation. By running features, performance, and full-scale network testing early on, 

rather than waiting until deployment to see the impact of key design decisions, the DT-

RAN dramatically reduces development cost and time to market. The ability to predict 

and visualize network performance under various conditions not only helps with 

network planning but also with operations of deployed networks, effectively reducing 

network downtime by figuring out ‘early on’ potential misconfigurations or network 

anomalies (including security threats) through easily interpretable DT-RAN’s 

evaluation before these aberrations impact the live network. 

 

2.4.2 Trustworthiness Management 

A DT-RAN should be highly reliable to achieve trustworthy virtual-real interaction, 

including accurate reflection and reliable control of the physical network. 

Trustworthiness is at the core of DT-RAN’s fundamental characteristics, which refers 

to the degree to which the virtual representation of the physical network can be relied 

upon to accurately and consistently reflect the real-world conditions and behaviors of 

the physical network. However, due to limited available network resources, and limited 

computing resources or degraded model performance, the trustworthiness of DT-RAN 

might degrade. For example, limited data transmission bandwidth and high network 

load can prevent the network from supporting real-time data collection for model 

construction and synchronous mapping of physical network. So, the results/outputs of 

the DT-RAN at the corresponding moment would not be trustworthy, and we need to 

monitor the trustworthiness of the DT-RAN to make necessary adjustments when 

there is a decline in DT-RAN’s trustworthiness. 

Enabling Technologies: 

A DT-RAN is constructed by integrating multiple models. The combination and 

richness of these models determine the capability level of the DT-RAN. Hence, 

different capability levels are associated with different model compositions. For the 

basic capability level, the DT-RAN can simulate the static state and dynamic behavior 
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of physical networks, and accurately reflect the real network. For the advanced 

capability level, the DT-RAN can interact with the real network to collect real-time data 

from physical networks and use this feedback data for network configuration and 

control.  

Based on the ITU-T recommendation Y.3090 [41], a reference framework of a digital 

twin network mainly consists of a data sharing module, a modeling module, and a 

digital twin management module. The data sharing module is responsible for collecting 

and storing various network data and providing data services and a unified interface 

to other modules. The modeling module completes data-based modeling and provides 

the obtained model for various network applications. The digital twin management 

module oversees the lifecycle management and visualization of the digital twin. 

Trustworthiness management for DT-RAN can be executed by the digital twin 

management module.  

The trustworthiness of DT-RAN can be measured through trust evaluation [40]. Trust 

evaluation is a useful means to assessing the reliability of an object’s behavior. When 

the management function (a trustor) needs to evaluate the trustworthiness level of the 

DT-RAN (a trustee), it can utilize the obtained monitoring metrics data associated with 

the monitoring objects as input to a trust calculation function or a trust inference model. 

The monitoring objects might include the data, model and network/computing resource 

related to the DT-RAN. The monitoring metrics differ depending on the monitored 

objects. For example, the model performance metrics can be the model accuracy 

assessed by comparing the simulation/predicted results and the ground truth results, 

while the network/computing resource monitoring metrics can include network 

bandwidth, data transmission rate, delay, and computing resource availability ratio.  

In most cases, trust calculation functions use the weighted arithmetic operation or 

subjective logic model to calculate the trust value of a trustee based on the considered 

trust factors. The calculation or inference result can be seen as the trustworthiness 

level of the DT-RAN, which can serve as the basis of subsequent decision making.  

For instance, consider a DT-RAN system that is evaluated based on three trust factors 

derived from monitoring metrics: model accuracy (weighted at 0.5), network bandwidth 

availability ratio (weighted at 0.3), and computing resource availability ratio (weighted 

at 0.2). Each factor is normalized to a scale of 0 to 10, with 10 being the highest. 

Suppose the DT-RAN receives the following normalized ratings: model accuracy is 

8.5, network bandwidth availability ratio is 7.0, and computing resource availability 

ratio is 9.0. The trustworthiness level of the DT-RAN can then be calculated using the 

weighted arithmetic operation: 

TrustworthinessLevel = 0.5*8.5+0.3*7.0+0.2*9.0 = 4.25+2.1+1.8 = 8.15 

This result indicates that the DT-RAN has a trustworthiness level of 8.15 out of 10. 

High trustworthiness level means the DT-RAN output information/strategy/control can 

be reliably trusted and confidently applied to the real network. If the trustworthiness 

level of the DT-RAN drops below a certain threshold, management function might 
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need to downgrade DT-RAN capability level by reducing some models or 

replace/update/terminate certain models or revise data collection frequency or 

improve input data quality and so on. 

Example Use Case: 

Use Case 1: DT-RAN for Network Energy Saving 

The DT-RAN plays a crucial role in achieving optimal network energy savings. It 

models diverse energy-saving strategies, simulating them within the DT-RAN to 

determine optimal energy saving strategy without compromising end-user QoS.  

The Digital Twin virtual replica is mapped with real-network entities, environment, and 

their behavior. The real-time data is being collected from the network for predicting 

traffic patterns and current level of QoS to represent the network behavior and 

patterns. The DT-RAN would require the following inputs to replicate the real network 

in virtual models: 

• Network topology and coverage KPI. 

• Network & UE capability configurations (RATs, antennas, band support, etc.). 

• User device density, traffic profiles. 

• Specific service/user level SLAs. 

• Traffic patterns/ KPIs. 

• Power consumption datasets. 

The DT-RAN represents the current state of the radio access network. The power 

saving requirement (e.g., power saving goal and user QoS targets) should be 

submitted to DT-RAN for checking the optimal state of the network for energy saving 

and analyzing its impact on network configuration changes, coverage, traffic migration 

and end-user QoS level. The DT-RAN will leverage AI/ML techniques and model 

representation (e.g., coverage prediction model, user re-distribution model, user 

experience prediction model, energy consumption prediction model) to arrive at an 

optimal state and can push the target parameters and configuration changes to the 

network to realize it. The DT-RAN output strategies for energy optimization in networks 

would include: 

• Switching off a cell or carrier 

• Switching off some of the RF ports 

• Advanced sleep modes  

• Efficient cloud resource management. 

The adoption of the DT-RAN output energy saving strategy/control relies on the 

trustworthiness level of DT-RAN. The data, model and network/computing resource 

status all affect the trustworthiness of the DT-RAN. For example, the limited network 

transmission bandwidth will impact real-time data collection from the physical network, 

and the limited computing resource will impact the model construction and data 
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processing performance. All these will result in the corresponding decrease of the 

model performance. In order to ensure the desired DT-RAN trustworthiness level, 

these factors need to be monitored, including model performance, network/computing 

resource, etc. 

For the model performance monitoring, the monitoring metrics can be the coverage 

prediction model accuracy, user experience prediction model accuracy and/or energy 

consumption prediction model accuracy. For the network resource status monitoring, 

the monitoring metrics can be the network element load and network transmission 

resource usage. Based on the monitored metrics, the DT-RAN trustworthiness can be 

evaluated by the weighted arithmetic operation or subjective logic model. 

When the evaluated trustworthiness of DT-RAN is high, the energy-saving strategies/ 

controls output by DT-RAN can be applied on the real network; however, if the 

trustworthiness of DT-RAN is low, potential actions such as downgrading DTN 

capability level by reducing/terminating some models or replacing/updating certain 

complex models with simplified models of the DT-RAN can be taken into consideration 

to ensure the satisfactory performance of DT-RAN. 

 

2.5 Intercommunication/Information Exchange  

As stated earlier, a DT-RAN is an up-to-date virtual representation of the physical O-
RAN system, asset, or process. It is a model continuously tuned to and reflecting the 
physical counterpart or twin while dynamically adapting to its operational and other 
changes. Furthermore, DT-RAN simulated model leverages data flow, AI/ML and 
analytics, and desired services to provide visualized insights and actionable decisions 
towards use cases such as new O-RAN scenario analysis and optimization with 
energy efficiency. This implies continuous and dynamic levels of interfacing and 
access, data flow and communication, as well as exposure and interactivity within the 
DT-RAN, and particularly across the DT-physical system. 

A logical view of this system and levels of communication and interactivity, particularly 

across the physical and DT worlds, are shown in Figure 2-14. It is noteworthy that 

there can be a variety of proposed architectures based on applications, and the current 

state of research and development.  
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Figure 2-14: Communications within DT and across DT-Physical Systems 

However, there is a common understanding that enabling efficient information 

exchange between various modules of DT-RAN as well as between DT-RAN and 

external entities, e.g., the underlying real network and associated network applications 

is crucial to the proliferation of scalable, agile, and highly reliable DT-RAN. 

In order to train or calibrate (depending on the modeling technology being used) the 

models within the DT-RAN as well as to keep DT-RAN synchronized with the real 

network, data is to be collected from the real network. Capability of the existing O1 

interface in O-RAN network can be enhanced to support the data collection 

requirement for DT-RAN. The enhancements can include – 1) more performance 

metrics (PM) to be exposed from the O-RAN network elements, 2) more instantaneous 

and event driven status reports, not only limiting to the statistical performance metrics, 

and 3) potentially improving bandwidth and latency on the O1 interface transport layer 

to support the demanding data collection requirements.   

Once the DT-RAN is synchronized with the real network, other functions or 

applications can interact with the DT-RAN, e.g., training AI/ML models, doing ‘what-if’ 

analysis, predicting performance impact with a certain control command or policy 

update, and mitigating conflicts with other applications etc. Before a change is made 

to the real network, the change can be made in the DT-RAN first. Once the 

performance is validated and assured with DT-RAN, the change is forwarded to the 

real network to update the configuration or control of the real network. 

3 Conclusion 

DT Technology will play a pivotal role in the emerging 6G network – all the way from 

aiding in complex network planning to providing a risk-free environment with a highly-

accurate and real-time executable experimental sandbox for trying various network 

configurations, executing what-if predictive analysis and innovating new network 

features like algorithms, protocols, topologies, etc. To realize the full potential of DTN, 

the right set of technologies and tools needs to be ensembled in creating different 
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modules of a DTN. In this research report, the authors have collaborated into a deep 

dive analysis of various building blocks and associated key enabling technologies for 

creating DT-RAN.  

The three key pillars of a DT-RAN are identified as – Data, Modeling, and Interfaces. 

Data is the fuel for DT-RAN, and there are various types of data that need to be 

accumulated for creating faithful digital replica of complex RAN behavior. While data 

collected from the field (e.g., from network elements and physical environment) would 

be valuable, the sheer volume of data required for effectively training a DT model is 

likely not available purely from collected data. Other sources of data, for example 

synthetically generated data through various advanced AI/ML techniques or 

augmenting synthetic data with real-data would be critical towards meeting the quality, 

quantity and diversity needs for DT-RAN data. Managing data lifecycle is another 

important aspect of DT-RAN data. In particular, maintaining the information on DT-

RAN data drift, i.e., the changes in the data distribution (either as input or output of the 

DT-RAN) compared to the real system data is crucial, and need to be collected and 

monitored on a regular basis. Based on the collected data drift information, timely 

updates of the DT-RAN with the new data collected from the real system would ensure 

the high fidelity and trustworthiness of DT-RAN over time.  

Modeling DT-RAN involves various facets of the physical RAN, including network 

elements, surrounding physical environment, network subscribers and the end-to-end 

system behavior, and various technologies enabling each of these modeling aspects. 

Notable technology enablers for DT-RAN modeling include Analytical/Stochastic 

modeling, Simulator/Emulator based modeling, AI/ML based modeling, Ray Tracing 

(including differential ray tracing) and Graph Neural Networks. The degree of 

computational complexity varies across these different modeling approaches. But the 

common underlying principle enabling efficient DT-RAN modeling is the ability of fast 

computing, which can be aided by accelerated computing technologies. Key 

technology enablers for accelerated computing in DT-RAN manifest in various forms, 

e.g., acceleration hardware (e.g., GPU, DPU, TPU, NPU, FPGA, ASIC) and 

associated acceleration software (e.g., SW libraries accelerating mathematical 

computation), multi-GPU scaling and HPC, cloud computing and distributed/edge 

computing. Visualization of DT-RAN’s simulation and data analytics through 

sophisticated tools like high end graphics (3D models, AR/VR), geospatial 

visualization, RF heatmaps, etc. would be crucial for deriving new and explainable 

insights into network’s predictive behavior, what-if analysis, and configuration testing. 

While deriving valuable insights about real-network’s behavior from its twin, it is critical 

to ensure the Digital Twin is in sync with the real-network and truly reflecting the 

network’s current behavior – which makes performance monitoring of the DT-RAN an 

important criteria, enabled through trust evaluation.  

Finally, the third pillar of DT-RAN, the interfaces connecting various components of 

DT-RAN as well as between the DT-RAN and its physical counterpart can be enabled 

by enhancing existing interfaces (like O1) in open RAN architecture and further 

research is needed to explore the detailed needs of these interfaces (e.g., type/volume 

of data to be exchanged, frequency of data transfer, targeted latency/bandwidth, 
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security aspects, etc.) and whether existing interfaces could serve the purpose through 

enhancements or new interfaces to be introduced.  

The report also highlights a number of use cases to illustrate how these technology 

enablers can be combined together to facilitate DT-RAN deployment in various 

scenarios including DT-RAN for AI/ML training, testing and performance assurance, 

network planning, network energy saving, site-specific network optimization and 

network automation [42]. 

As a follow up of this research report, we will explore various functional, service, testing, 

security and architectural requirements of DT-RAN and some of the critical challenges 

in fulfilling these requirements, along with looking for potential solutions. Bringing all 

these research findings together will ultimately pave the way for understanding the 

nuances of building DT-RAN for emerging 6G networks, and can be used as a valuable 

guideline for extending DT-RAN for O-RAN centric networks.      
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