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Executive summary 

This document discusses the use cases, requirements, and potential technological 

directions of cross-domain AI for the next generation networks. Firstly, it provides a 

brief overview of the current research and application status of Artificial Intelligence 

(AI) in the various domains of Network as a Service. The report describes the progress 

of AI-related research within different standards organizations such as 3GPP, O-RAN, 

ONAP, ETSI, etc. Then this research report further explores cross-domain AI 

technology. To that end, it focuses on the next-generation network, provides potential 

technical considerations, and impacts of cross-domain AI on the current network, and 

presents potential technological directions for the collaboration of data, computing 

power, and models. This report identifies key research areas in cross-domain AI 

research and serves as a starting point for further exploration in each key direction. 
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1 Introduction 

The technical report of O-RAN nGRG-RR-2023-03 (Native and Cross-domain AI:  

State of the art and future outlook) has already provided the definition of cross-domain 

Artificial Intelligence (AI) and the potential impact it may have on the network [1]. This 

research report focuses further on use cases, requirements, and potential technical 

directions of cross-domain AI. Cross-domain AI means collaboration and integration 

of AI-enabled functionalities across different domains. These functionalities can map 

to network domains, (like Radio Access Network (RAN), Core Network (CN), Transport 

Network (TN), network applications etc. and Network Digital Twin (NDT)) and other 

domains (like management system, User Equipment (UE), etc.). This report first 

provides a comprehensive survey of the current state of AI adoption in the domains of 

RAN, CN, and management system. The report then analyzes the scenarios in which 

cross-domain AI may be applied, as well as the technical requirements and 

considerations. Finally, a reference architecture for cross-domain intelligent 

collaboration is proposed, and possible technical solutions to achieve cross-domain 

AI collaboration are given.  
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1.1 Network domains  

AI has been widely used in the network domains to solve problems such as network 

performance optimization, traffic prediction, and assisted decision making. This 

section introduces the current research status of AI from both RAN domain and CN 

domain. 

1.1.1 AI in RAN domain 

(1) 3GPP RAN Intelligence 

For the RAN domain, Third Generation Partnership Project (3GPP) RAN3 has studied 

high-level principles and functional architectures for AI [2] in Release 17 (Rel-17). To 

support different AI scenarios, 3GPP has proposed several basic functional blocks, 

which are given in Figure 1.1, including data collection, model training, model 

inference, and actor. The study focused on three use cases: network energy saving, 

load balancing, and mobility optimization. AI/Machine Learning (ML) model training 

and inference can be deployed at Operation Administration and Maintenance (OAM) 

or 5G Node B (gNB) to provide intelligent capability.  

Data 

Collection

Model Training 

Model Inference Actor

Training Data

Inference Data Output

Model 

Deployment/

Update

Model 

Performance

Feedback

Feedback

 

Figure 1.1 Functional framework for RAN intelligence (RAN3 [2]) 

The normative work based on the conclusion of 3GPP Rel-17 continued in Rel-18, to 

further specify these enhancements, with a focus on developing standardized 

interfaces and protocols that enable seamless integration of AI/ML-based solutions 

into the existing NG-RAN architecture. Besides, 3GPP RAN1 is carrying out a study 

on AI/ML for 5G New Radio (NR) air interface [3]. The study aims to explore the 

potential benefits of using AI/ML techniques to optimize the performance of the air 

interface, such as improving energy efficiency, spectral efficiency, and Quality of 

Service (QoS), with a focus on three use cases: Channel State Information (CSI) 

feedback, beam management, and positioning. In Release 19 (Rel-19), there is one 

new Work Item (WI) and two new Study Items (SIs) on RAN-related AI/ML topics. 

RAN1 has triggered new work item on AI/ML for NR air interface, which aims to provide 

specification support for the use cases of beam management and positioning accuracy 

enhancements. RAN2 has triggered the new SI on AI/ML for mobility in NR, which 

focuses on mobility enhancement in RRC_CONNECTED mode over air interface. 

RAN3 triggers the new SI on enhancements for AI/ML for NG-RAN to further 
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investigate new AI/ML based use cases and identify enhancements to support AI/ML 

functionality.  

O-RAN  

In O-RAN, Non-real time (RT) and Near-RT Ran Intelligent Controllers (RICs) have 

been standardized. Non-RT RIC enables long time-scale control and optimization of 

RAN elements and resources, AI/ML workflow, including model training and updates, 

and policy-based guidance of applications/features in Near-RT RIC. Error! Reference 

source not found. shows the Near-RT RIC Architecture [4], where Near-RT RIC 

enables Near-RT control and optimization of RAN elements and resources via fine-

grained (e.g. UE level, cell level) data collection and actions over the E2 interface. 

Besides, Y1 interface from Near-RT RIC to Y1 consumers can be used to expose RAN 

analytics information, where Y1 consumer can be entities within or outside of the 

Public Land Mobile Network (PLMN) trust domain that consumes the Y1 services 

produced by the Near-RT RIC. 

 

Figure 1.2 Overview of Near-RT RIC architecture [4] 

Figure 1.3Error! Reference source not found. shows the logical architecture of O-

RAN [5]. AI/ML related functionalities can be mapped into three loops. The location of 

the ML model training and the ML model inference for a RAN function depends on the 

computation complexity, the availability and quantity of data to be exchanged, and the 

response time requirements and the type of ML model. O-RAN has set up deeper 

capabilities to support AI inside the RAN domain. Current O-RAN architecture focuses 

primarily on AI capabilities on the RAN side.  
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Figure 1.3 Logical architecture of O-RAN [5] 

1.1.2 AI in CN domain 

For the CN, 3GPP has been working on the development of the Network Data 

Analytics Function (NWDAF) as a key component of the 5G network architecture since 

Rel-15 [6]. As shown in Figure 1.4, the NWDAF is responsible for collecting and 

analyzing network data from CN to provide insights into network performance, 

resource utilization, and user behavior. This information can be used to optimize the 

performance of the network, improve the user experience, and enable the 

development of new applications and services that take advantages of the capabilities 

of 5G networks. In 3GPP, the NWDAF provides Analytics Logical Function (AnLF) and 

Model Training Logical Function (MTLF) to 5G Core (5GC) network functions (NF), 

and OAM. Data collection coordination and delivery function coordinate the collection 

and distribution of data requested by NF consumers. 
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Figure 1.4 Reference architecture for CN data analytics [6] 

1.2 Management domain  

Currently, AI/ ML is applied in the management domain mainly to solve problems 

such as intelligent fault diagnosis, resource optimization, and data analysis to help 

achieve network autonomy. This section describes the relevant research and work 

done by 3GPP, European Telecommunications Standards Institute (ETSI), and Open 

Networking Automation Platform (ONAP), in applying AI in the management domain. 

1.2.1 3GPP SA5 Management Data Analytics (MDA) 

Management Data Analytics (MDA) [7][8] Management Services (MnS) process 

network and service data as well as events, such as those indicated by performance 

data (measurements, Key performance indicators (KPIs), Minimization Drive Test 

(MDT) reports), alarms, and network configuration data. The outputs provided by an 

MDA Service (MDAS) producer to a service consumer are analytics like predictions, 

root cause analysis, and action recommendations. 

The scope of an MDAS producer can be domain-specific, i.e., either RAN or core 

network, or cross-domain. Correspondingly, the ingested data and produced analytics 

results may be related to gNBs and/or specific core network functions. 

Figure 1.5 shows cross- and single domain MDAS producer interaction, where the 

RAN and CN domain MDA MnS produces interface to the respective RAN (gNB) and 

CN (NWDAF) network functions and their MnS.  
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Figure 1.5 Coordination between NWDAF, gNB and MDAS producer [7] 

Potential scenarios shown in Figure 1.5 include [7]: 

• NWDAF, gNB, and cross-domain MDA consuming MDA MnS provided by the 

respective domain-specific MDA MnS producer.  

• CN domain MDA MnS producer consuming services provided by NWDAF/other 

CN NFs. 

• RAN domain MDA MnS producer consuming MnS provided by the gNB. 

• Cross-domain MDA producer consuming MnS/MDA of the RAN and CN 

domains  

• Cross-domain MDA producing MDA MnS for a cross-domain MDA consumer. 

 

1.2.2 3GPP SA5 AI/ML Management 

In the study on AI/ML Management [9][10], the generic workflow of the operational 

steps in the lifecycle of an ML model or entity, is depicted in Figure 1.6. Three use 

case categories were defined:  

• Use cases related to the training phase, 

• Use cases related to the inference phase,  

• Use cases with requirements in both the training and inference phases.  
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Figure 1.6 AI/ML operational workflow 

The use cases focus on ensuring that the functionality containing the AI/ML 

capabilities has an interface acting as the producer of the AI/ML related MnS.  

(1) Management capabilities for training phase 

In the training phase, the data used for training the ML entities as well as the processes 

of training, testing, and validation are managed. ML training data management may 

include capabilities for processing of data as requested by a training function, by 

another management function, or by the ML training MnS consumer. Then, based on 

the availability of training data, ML training management offers capabilities for enabling 

the MnS consumer to request and manage the model training /re-training. While some 

basic management capabilities for ML training were already agreed normatively, more 

capabilities related to ML training have been discussed in the study (critical among 

them being training configuration and performance management): e.g., the MnS 

consumer may activate or deactivate the training or configure the ML entity to be 

trained, the training function or its subsequent processes; the MnS consumer may also 

manage the training performance and set policies for the training, e.g., for the case 

that a producer can initiate ML training without explicitly being triggered by the MnS 

consumer. 

Further capabilities deal with the testing and validation of ML entities. ML testing 

management includes capabilities enabling the MnS consumer to request the ML 

entity testing, and to receive the testing results for a trained ML model. It may also 

include capabilities for selecting the specific performance and trustworthiness metrics 

to be used or reported by the ML testing function on the one hand. On the other hand, 

ML validation includes the capabilities to evaluate the performance of the ML entity 

when performing operations on the validation data, and to identify the variability of the 

performance on the training data and the validation data. For example, if the variability 

is not acceptable, the entity would need to be tuned (re-trained) before being made 

available to the MnS consumer and used for inference.  

(2) Management capabilities for the inference phase 

The main capability in the inference phase is AI/ML inference function control which 

enables the MnS consumer to control the inference function including the activation 

and deactivation of the function. This may be extended to include ML entity 



O-RAN NGRG CONTRIBUTED RESEARCH REPORT 

 <RR-2024-02>                                                                                                                                                            
14 

activation/deactivation by the MnS consumer, including instant activation, partial 

activation, and schedule-based or policy-based activations. However, part of the AI/ML 

inference control may include AI/ML deployment control and monitoring which involves 

capabilities enabling the inference function to load the ML entity. Thereby the MnS 

producer (inference function) may provide information to the MnS consumer when a 

new ML entity is available, enabling the MnS consumer to request the loading of the 

ML entity, the update of the function using the new ML entity or to set the policy for 

such deployment or update as well as to monitor the corresponding processes. 

Another major capability is AI/ML inference orchestration intended to enable the MnS 

consumer to orchestrate the AI/ML inference functions, given the knowledge of 

capabilities of the inference functions, the expected and actual running context of ML 

entity, the AI/ML inference performance, the AI/ML inference trustworthiness, etc. As 

an example, the MnS consumer may set the conditions to trigger the specific 

inferences based on the expected outcomes of those inferences. 

(3) Management capabilities common to the training and inference phases 

The main common capabilities are related to AI/ML trustworthiness management, 

focused on allowing the MnS consumer to configure, monitor, and evaluate the 

trustworthiness of an ML entity covering the whole lifecycle. This applies to the ML 

entity at the training and testing stages as well as when the ML entity is used by an 

AI/ML inference function.  

In addition, common capabilities on configuration management and performance 

management also apply to both training and inference. AI/ML configuration 

management is intended to enable the MnS consumer to configure the features of the 

ML entity or its related training and inference process. AI/ML performance 

management should enable the MnS consumer to monitor and evaluate the 

performance of an ML entity at training/testing stages or when used by an AI/ML 

inference function. 

(4) Deployment Scenarios Reference 

The ML training or inference function can be located in the cross-domain management 

system or the domain-specific management system (i.e., a management function for 

RAN or CN). The ML training function, and AI/ML inference function may be deployed 

separately from each other, or any two or all of these functions may be co-located. 

(e.g., Figure 1.7 shows an example of intelligence in RAN where ML training and 

corresponding management are located at the RAN management function, while 

AI/ML inference function and corresponding management capability are located locally 

in gNB.) 
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Figure 1.7 RAN domain-specific management function for AI [10] 

1.2.3 ETSI ZSM AI Enablers 

The goal of ETSI Zero touch network & Service Management (ZSM) is to enable zero-

touch automated network and service management in a multi-vendor environment. 

The ZSM architecture (Figure 1.8) enables exposing and consuming MnS across a 

set of Management Domains (MDs) and an end-to-end (E2E) Service Management 

Domain. 

 

Figure 1.8 ETSI ZSM architectural framework [11] 

The technical specification in [11] extends the set of MnS available within the ZSM 

architecture to address cross-domain AI/ML aspects. In addition to common MnS (ML 

event notification, log collection, feasibility check, data processing, training reporting, 

model cooperation management), this is done along a taxonomy of AI/ML enablers 

(Figure 1.9): 
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Figure 1.9 ETSI ZSM AI enabling areas [12] 

• Data: providing data access across domains and ensuring e.g., data quality, 

privacy, and security are crucial for AI/ML  

• Execution: providing the deployment platform (compute) and operation for 

executing AI/ML applications (MnS model validation, sandbox configuration) 

• Action: converting the output of AI/ML applications to actions to be executed on 

network/management functions, management domains, etc. 

• Inter-AI: coordinating interactions with potentially many types and huge number 

of AI/ML application instances which is relevant both within a domain and 

across domains (e.g. MnS configuration of Federated Learning, transfer 

learning, and other distributed learning.) 

• Governance: interfacing the AI/ML-enabled management domains to the 

human network operator with management services targeting the mapping of 

Intent to AI/ML applications on the one hand, and instrumenting AI/ML 

applications to be “trustworthy”, i.e., explainable, robust and fair (MnS Data & 

Model Trust management, Data & Model Trust evaluation, ML Fallback 

Management) on the other hand.  

Thereby, ZSM enables a range of cross-domain “AI/ML for Network Management” as 

well as “Management of AI/ML” scenarios like (cf. [12], Annex A) ML-based Anomaly 

Detection, Federated Learning for Network Management, Trustworthy ML, Distributed 

ML, ML model validation and ML model cooperation. 

 

1.2.4 ONAP AI Management Practices 

ONAP provides a comprehensive platform for real-time, policy-driven service 

orchestration and automation. The Data Collection, Analytics, and Events (DCAE) 

project provides intelligence for ONAP to support automation by performing network 

data collections and analytics, which includes Micro-Services (MS), i.e., collectors, 
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analytics, and event processors to support active dataflow and processing. Among 

these MSs, Slice Analysis MS is a key component, which is used to perform E2E 

intelligent slicing. The functions can be summarized as follows： 

• Analyzing the Fault Management (FM) / Performance Management (PM) data 

and KPI data related to various slice instances, slice sub-net instances, and 

services catered by the slices. 

• Determining and triggering appropriate control-loop actions based on the 

analysis above. 

• Receiving recommendations for closed-loop actions from AI/ML or Analytics 

engines.  

 

Figure 1.10 ML MS enhancement on intelligent slicing [13] 

Error! Reference source not found. provides an example of ML MS enhancement 

on intelligent slicing, where Slice Analysis MS can consume data including a list of 

Near-RT RICs and the current configuration of the Near-RT RICs.  Based on the data, 

Slice Analysis MS computes the slice performance-related value, and the computed 

value is compared with the current configuration of the Near-RT RICs. If the change 

in configuration exceeds the minimum percentage value, which is kept as a 

configuration parameter, the closed-loop will be triggered. Upon reception of the 

recommendation to update the configuration of RAN from AI/ML or Analytics engines, 

the Slice Analysis MS prepares and sends a control loop onset message. 

2 Use cases and considerations of cross-domain AI 

As network application types and scenarios become more complex, future networks 

need to provide ubiquitous native AI capabilities. This chapter identifies some use 

cases recommended being enabled by AI collaboration across different domains. 

Then, we further give some technical considerations and requirements for cross-

domain AI. 
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2.1 Use cases 

2.1.1 Cross-domain data analysis  

With the continuous enrichment of application types, various domains in future 

networks will generate a large amount of data. Cross-domain data analysis services 

can utilize AI/ML to analyze ubiquitous data and provide end-to-end analysis reports 

and optimization suggestions to ensure differentiated service requirements for users. 

Currently, 3GPP MDAS can collect and analyze management-related data from RAN, 

CN, and other domains to provide data analysis services in various scenarios. For 

example, it can offer services for mobility management, energy efficiency analysis, 

Service Level Specification (SLS) analysis, and more. Table 2.1 shows an example of 

inputs and outputs related to AI in the RAN, CN, and management system for mobility 

management scenarios. Cross-domain data analysis services collect measurement 

information from the RAN and CN, and provide analysis reports and recommendations 

to the gNB or other NFs. Using AI technology to analyze data generated at various 

locations in the network can help optimize the operational efficiency and enhance the 

user experience. 

Table 2.1 Cross-domain data analysis for mobility management 

 Data Source Input Output 

MDAS[7] UE, NWDAF, 
gNB, etc. 

1. Performance 
Measurements (Reference 
Signal Received Power 
(RSRP) / Reference Signal 
Received Quality (RSRQ) / 
Signal to Inference plus 
Noise Ratio (SINR), End-
to-end Latency, 
Throughput, Data packet 
loss…) 

2. Resource information 
3. UE location report… 

1. Consumed/projected 
resource information. 

2. Priority of the target gNB for 
optimal handover (HO). 

3. Recommendation for gNB 
modification 

NWDAF[6] Access and 
Mobility 
Management 
Function 
(AMF) 

1. UE locations (UE location, 
Timestamp) 

2. Type allocation code(TAC) 
3. UE access behavior trends 
4. UE location trends 

UE mobility statistics or 
predictions 
1. Time slot start, duration 
2. UE location: Observed 

location statistics/ predicted 
locations 

3. Confidence in prediction 

RAN[2] UE 1. UE location information 
2. Radio measurements 

(RSRPs/ RSRQs/ SINRs) 

1. UE trajectory prediction 
2. Estimated arrived probability 

in (Conditional handover) 
CHO 

3. Predicted handover target 
node, candidate cells in 
CHO 

4. UE traffic prediction 
 

Neighboring 
RAN Node 

1. Position, QoS parameters 
of historical HO-ed UE 

2. Current/predicted resource 
status… 

Local Node 1. UE trajectory prediction 
2. Current/predicted resource 

status and traffic 
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Based on the O-RAN architecture, Near-RT RIC can serve as the agent for RAN 

domain data analysis, and SMO needs to add a cross-domain data analysis producer 

to collaborate with the core network NWDAF and Non-RT RIC to achieve cross-

domain intelligent data analysis. Future considerations include: 

1. How to subscribe to data from different network domains? What interfaces/methods 

can be used? 

2. Data types, dimensions, and structures of the data collected from different domains 

may vary. How to preprocess, clean, and integrate the data? 

3. How to reduce communication overhead during cross-domain data transfer and 

ensure data security and privacy? 

4. How to evaluate the performance of the cross-domain data analysis model. How to 

provide feedback and update the models? 

5. How to ensure data alignment when using distributed learning? 

2.1.2 Intent based E2E smart slicing (ONAP) 

For scenarios requiring a new E2E slice [14], network slicing management system 

slices the SLA (such as network slicing list, PLMN list, maximum number of users, 

service areas, the end-to-end delay) for each domain (access network, transmission 

network, core network, etc.) of the SLA decomposition according to the requirements 

of the tenants. Then each domain can utilize AI/ML for resource configuration, 

including bandwidth, delay and so on. In the process of slicing operation, operators 

are unable to effectively evaluate the service quality of various services due to the lack 

of real-time monitoring service related experience. Thus, an intelligent network slicing 

method is urgently needed. By evaluating the SLA of the network slicing, the service 

experience in the slicing can be monitored in real time, so as to accurately perceive 

the business quality experienced by users and make accurate, dynamic adjustments 

and error corrections of the network. 
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Figure 2.1 A closed-loop structure for E2E slicing [15] 

ONAP has provided an example of smart E2E slicing which is given in Figure 2.1. The 

ONAP Operation Manager (OOM) is a microservice deployment system based on 

Kubernetes. Table 2.2 lists the microservices which are related to the E2E slicing use 

cases. 

Table 2.2 ONAP microservices which is related to the E2E slicing use cases 

Short 
Name 

Full Name Description 

UUI 
Use case User 
Interface 

Provides the user interface for users to 

interact with ONAP 

SO 
Service 
Orchestrator 

Provides end-to-end service 

orchestration 

DCAE 

Data 

Collection, 

Analytics, and 

Events 

Performs data analytics of the telemetry 

data 

Policy 
Policy 
Framework 

Executes policies  

AAI 

Active and 

Available 

Inventory 

Data store for network and service 

configurations, network resources, 

inventory, etc. 

 

The network sends FM and PM data to the DCAE subsystem to monitor the network 

state. When the network state cannot meet the user's demand, DCAE can modify the 

network policy configuration to achieve the modification of the slice instance or policy 

to achieve the modification of the slice parameters. The modification request is 
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executed through SO, and then the network is controlled in the domain controller (RAN 

domain, CN domain, TN domain) to make some modifications to the network state. 

Therefore, in order to achieve intent-driven, end-to-end, intelligent slicing, the 

management system needs capabilities such as RAN and CN data collection, intent 

transfer and decomposition, and cross-domain AI orchestration. By leveraging cross-

domain AI collaboration, end-to-end slicing requirements can be guaranteed, while 

also enabling real-time monitoring and flexible adjustment of slicing performance. 

2.1.3 Network Digital Twins 

NDT in the realm of Open RAN heralds a new era of cross-domain network 

management and optimization. These virtual replicas encompass various network 

domains (access, core, transport, and application) providing a holistic view of the 

network's performance and interactions. In multi-domain environments, NDT offers 

enhanced capabilities for addressing use cases in optimization, operation & 

management, and planning. In essence, NDT in open RAN presents a powerful multi-

domain approach to modernize network management and optimization. Multi-domain 

network digital twin in Next Generation (Next G) networks can be applied to various 

use-cases, encompassing optimization, operation, and testing, as well as planning. 

Here are some examples: 

(1) Optimization Use-Cases:  

• Resource Allocation Optimization: The network digital twin can optimize 

resource allocation across multiple domains, such as compute, communication, 

and storage, to maximize network efficiency and performance. It can dynamically 

allocate resources based on real-time demand, traffic patterns, and QoS 

requirements, ensuring optimal resource utilization. 

The network digital twin plays a crucial role in facilitating cross-domain resource 

allocation optimization in next-generation networks. This is how the network digital 

twin contributes to this domain: 

Holistic Resource View: The network digital twin provides a comprehensive and 

real-time view of the network infrastructure and its available resources across 

multiple domains. It includes information about compute resources, 

communication elements, storage capacities, and other network components. 

This holistic view allows network operators to have a clear understanding of the 

available resources and their utilization across different domains. 

Resource Modeling and Simulation: The digital twin enables the modeling and 

simulation of different resource allocation scenarios. It can simulate resource 

demands, traffic patterns, and application requirements to assess the impact of 

various allocation strategies. By analyzing these simulations, operators can 

identify optimal resource allocation configurations that maximize network 

efficiency, performance, and resource utilization. 

Dynamic Resource Optimization: With the NDT, operators can dynamically 

optimize resource allocation based on real-time network conditions and demands. 
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By continuously monitoring the actual resource utilization and comparing it with 

the digital twin model, operators can identify areas of overutilization or 

underutilization. This information allows them to make real-time adjustments to 

resource allocations, ensuring efficient utilization of resources across domains. 

Quality of Service Optimization: The digital twin assists in optimizing resource 

allocation to meet the QoS requirements of different applications and services. By 

simulating and analyzing the impact of resource allocation on performance 

metrics such as latency, throughput, and reliability, operators can identify 

resource allocation strategies that prioritize critical services while balancing the 

needs of other applications. This ensures that the network delivers the required 

QoS levels across domains. 

Load Balancing and Traffic Optimization: The network digital twin helps in load 

balancing and traffic optimization by providing insights into network traffic patterns 

and resource utilization. By analyzing these patterns, operators can identify 

congested areas or underutilized resources and make adjustments to balance the 

load across domains. This optimization technique improves overall network 

performance and ensures efficient resource utilization. 

Real-Time Resource Monitoring and Management: The digital twin enables real-

time monitoring of resource usage and performance metrics across different 

domains. It provides operators with up-to-date information on resource availability, 

usage patterns, and performance bottlenecks. This real-time visibility allows them 

to identify potential resource allocation issues and take proactive measures to 

address them promptly. 

Optimization Across Heterogeneous Networks: Next-generation networks are 

expected to be heterogeneous, comprising different types of networks such as 

cellular, Wi-Fi, and satellite.  

The NDT helps optimizing resource allocation across these heterogeneous 

networks by considering their unique characteristics and capabilities. It enables 

operators to leverage the strengths of each network type and allocate resources 

accordingly, ensuring efficient utilization and improved overall network 

performance. 

These capabilities empower network operators to allocate resources efficiently, 

optimize network performance, and meet the diverse requirements of applications 

and services in next-generation networks. 

• Energy Efficiency Optimization: The NDT serves as a powerful tool in 

simulating and analyzing energy consumption across diverse domains, 

pinpointing avenues for energy refinement. Beyond energy efficiency, NDT-

enabled infrastructure is designed for vital operational, testing, and optimization 

use-cases. It supports advanced strategies like dynamic power management, 

load balancing, and energy-efficient routing to diminish energy use and lower 

operational costs. While it is acknowledged that the NDT itself requires a 

substantial energy investment, the trade-off becomes evident when considering 
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its broader applications. The energy consumed by the NDT is offset by the 

improvements and efficiencies realized across the three core use-case categories: 

operation and testing, planning and optimization. Thus, the comprehensive 

advantages offered by the NDT, spanning from enhanced energy efficiency to 

robust optimization capabilities, often justify the energy costs associated with its 

operation. By producing a virtual mirror of the network infrastructure—

encompassing compute resources, communication elements, and power 

systems—the NDT facilitates real-time monitoring, evaluation, and optimization 

of energy consumption across various domains. Here is how it helps in improving 

energy efficiency: 

Energy Monitoring and Analytics: NDT continuously collects data on energy 

consumption from various network components. This includes information on 

power usage, resource utilization, traffic patterns, and environmental conditions. 

By analyzing this data, energy hotspots, inefficiencies, and potential areas for 

energy optimization can be identified. Insights gained from the NDT can guide 

decision-making processes for energy-efficient resource allocation and operation. 

Energy-Aware Resource Allocation: The NDT can provide guidance on resource 

allocation decisions by considering energy efficiency as a key objective. By 

simulating different scenarios and assessing their energy implications, the digital 

twin can recommend resource allocation strategies that minimize energy 

consumption while meeting performance requirements. For example, it can 

suggest intelligent placement of compute tasks, adjustment of communication 

parameters, or load balancing techniques to optimize energy efficiency. 

Dynamic Energy Management: The NDT allows for real-time energy management 

based on dynamic network conditions. By integrating real-time data from sensors 

and devices, the digital twin can adapt energy consumption based on the current 

network demands. For instance, during periods of low traffic or idle compute 

resources, the digital twin can recommend power-saving modes, such as sleep 

or low-power states, to conserve energy while maintaining network readiness. 

Energy Optimization Strategies: Leveraging the insights provided by the network 

digital twin, energy optimization strategies can be developed and implemented 

across different domains. These strategies may include dynamic power control, 

intelligent resource scheduling, workload consolidation, and traffic optimization 

techniques. The digital twin facilitates the evaluation and fine-tuning of these 

strategies, ensuring their effectiveness in improving energy efficiency across the 

network. 

Predictive Maintenance and Energy Planning: By simulating various scenarios 

and predicting future energy requirements, the network digital twin assists in 

proactive energy planning and maintenance. It can identify potential energy-

related issues, such as overutilization, inefficient power distribution, or cooling 

inefficiencies. By addressing these issues in advance, network operators can 

optimize energy usage, reduce downtime, and improve overall energy efficiency. 
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This results in reduced energy costs, minimized environmental impact, and 

enhanced sustainability of Next G networks. 

• Service Orchestration and Network Slicing: By modeling and simulating 

network slices, the digital twin can facilitate efficient service orchestration. It can 

optimize the allocation of resources, ensure isolation between slices, and 

dynamically adjust resource allocations based on changing service requirements. 

NDT assisted Service Orchestration and Network Slicing could be performed as 

follows: 

Modeling and Simulation: The network digital twin provides a virtual 

representation of the network infrastructure, including compute, communication, 

and storage resources across different domains. It allows for modeling and 

simulating various network slices and service scenarios. This enables network 

operators to evaluate the feasibility and performance of different service 

orchestration and network slicing configurations before actual deployment. 

Resource Allocation and Optimization: With the network digital twin, operators 

can optimize the allocation of resources across multiple domains to support 

network slices efficiently. By simulating resource demands, traffic patterns, and 

QoS requirements, the digital twin assists in determining the appropriate 

allocation of compute, communication, and storage resources to meet the needs 

of each network slice. It helps ensure that the resources are efficiently utilized, 

and the QoS requirements of different services are satisfied. 

Dynamic Slice Management: The digital twin enables dynamic management of 

network slices by continuously monitoring their performance and adjusting 

resource allocations as needed. It provides real-time insights into the utilization 

and performance of each network slice, allowing operators to make informed 

decisions on scaling resources, adjusting network parameters, and ensuring 

optimal slice operation. This dynamic management capability enables efficient 

service orchestration and adaptation to change service demands. 

Service Isolation and Security: Network slicing requires strong isolation between 

different services to ensure data privacy, security, and QoS guarantees. The 

digital twin assists in modeling and enforcing isolation mechanisms to prevent 

interference or unauthorized access between network slices. It helps in identifying 

potential security vulnerabilities, simulating threat scenarios, and optimizing 

security measures to protect the integrity and confidentiality of each network slice. 

Service Level Agreement (SLA) Management: The network digital twin supports 

SLA management by providing a holistic view of the network slices and their 

performance metrics. It helps in monitoring and enforcing SLAs, ensuring that the 

agreed-upon service guarantees are met. The digital twin enables operators to 

track KPIs of each network slice, identify deviations from SLAs, and take proactive 

measures to maintain service quality. 

Fault Detection and Self-healing: The digital twin can monitor the health and 

performance of network slices in real-time. By comparing the actual state of the 
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network with the digital twin model, it can detect anomalies, failures, or 

performance degradation. This information enables operators to trigger self-

healing mechanisms, such as automatic reconfiguration, resource reallocation, or 

failover mechanisms, to ensure uninterrupted service and maintain the desired 

service levels. 

The network digital twin empowers efficient cross-domain service orchestration 

and network slicing by providing modeling and simulation capabilities, optimizing 

resource allocation, enabling dynamic slice management, ensuring service 

isolation and security, supporting SLA management, and facilitating fault 

detection and self-healing. It serves as a powerful tool for network operators to 

design, deploy, and manage network slices effectively, meeting the diverse 

service requirements and enabling the flexible and scalable delivery of services 

in next-generation networks. 

(2) Operation and Testing Use-Cases:  

• Fault Detection and Self-healing: The network digital twin can monitor network 

performance and detect anomalies or failures in real-time. By comparing the real 

network state with the digital twin model, it can identify issues and trigger 

proactive self-healing mechanisms to maintain uninterrupted service and 

minimize downtime. 

• Network Performance Testing: The digital twin can be used to simulate and test 

different network scenarios before actual deployment or major changes. It allows 

network operators to assess the impact of new services, applications, or network 

configurations, optimizing performance and ensuring smooth operation. 

• Security and Threat Analysis: The digital twin can simulate potential security 

threats and vulnerabilities, allowing for proactive detection and prevention 

measures. It can assist in evaluating the effectiveness of security mechanisms, 

identifying potential weaknesses, and improving network resilience against cyber 

threats. 

(3) Planning Use-Cases:  

• Network Capacity Planning: The network digital twin can assist in planning 

network capacity to accommodate increasing traffic demands. By modeling 

different network elements and simulating traffic patterns, it helps determine 

optimal capacity requirements, identify potential bottlenecks, and plan for network 

expansion or upgrades. 

•  Coverage and Deployment Planning: The digital twin can simulate coverage 

maps and assess the impact of different deployment scenarios. It assists in 

determining the optimal placement of base stations, access points, and other 

network elements to achieve desired coverage, capacity, and Quality of 

Experience (QoE) metrics. 

• Spectrum Management and Optimization: The digital twin can analyze 

spectrum availability and predict interference scenarios. It aids in optimizing 

spectrum allocation, evaluating the impact of new frequency bands, and 

improving spectrum efficiency for better network performance. 
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By leveraging multi-domain network digital twin technology, operators can optimize 

their networks, enhance operational efficiency, and make informed decisions in areas 

such as resource allocation, energy management, fault detection, performance testing, 

security, and network planning. These use-cases enable more efficient, resilient, and 

adaptive 6G/5G networks capable of meeting the evolving demands of diverse 

applications and services. 

2.1.4 Cross-domain QoE estimation 

Estimating end-user perceived quality from an application service has been the focus 

of mobile network operators, as end-user customer satisfaction impacts network 

operator revenue. 

Well-known QoS is a function of QoE, where QoE considers performance estimation 

at a higher layer in the network stack (closer to the user). In order to model and assess 

QoE accurately, it is important to include observation attributes (metrics indicating so-

called QoE factors) from different measurement points in the pipeline. For the 

assessment of video QoE during a video streaming application running at the end-

user device (UE), video playout bitrate, stalling event duration and frequency, user 

profile, user experience, and video codec can be important metrics; from radio access 

network, a received signal strength quality such as RSRP, RSRQ, SINR, interference, 

cell load are the important ones; while in the application server, some metrics related 

to QoE could be the application server load, inter-departure time of the video packets, 

etc. 

These datasets are inherently decentralized, as they are naturally collected and 

originated from different physical data sources. In conventional centralized ML, all 

observations obtained over distributed measurement points at different network layers 

(radio, network, application) are delivered over a communication channel to one 

centralized location that has good hardware resources. Then, an ML model is trained. 

However, there are scenarios where moving those decentralized datasets to a central 

location is difficult (if not impossible). Some reasons may include data privacy, high 

data volume, prohibitive delay, and unavailable bandwidth for data transfer. Thanks to 

distributed ML approaches, a large global model can be split and placed partially on 

distributed nodes enabling decentralized cross-domain learning. For example, for QoE 

estimation across terminals, RAN, CN, and application domains, a Vertical Federated 

Learning approach can be used. At this point, model transfer and computing resource 

scheduling across different domains need to be considered. Therefore, intelligent 

collaboration across domains is an important enabling technology for QoE estimation. 

2.2 Technical considerations of cross-domain AI 

We have explored different use cases and hinted at enabling technologies driving 

cross-domain AI (e.g., federated learning). In general, when looking at multi-vendor 

aspects impacting the standard, research should not be limited to looking at how the 

technology will work. Other important aspects to consider from the beginning are: 

1. Intellectual property (IP): in multi-vendor cross-domain AI use cases, how is IP 

guaranteed? 
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2. Liability: If something does not work well in a part of the cross-domain solution 

(e.g., bad performance of a part of a model), who is responsible for what? 

3. Innovation: Once an interface has been standardized, it is difficult to change. How 

to promote cross-domain AI solutions without hindering innovation? 

4. Data security and safety: When data is exchanged across different domains, what 

mechanisms can be used to ensure data security and privacy? 

5. Exposure capability: Cross-domain data sharing and cross-domain AI internal 

capabilities exposure can be provided. 

6. Cross-domain management capabilities: Cross-domain management and 

orchestration capabilities can be provided in order to effectively manage and 

maintain the life cycle AI/ML models. 

7. Computing resources: cross-domain AI use cases can take into account the 

availability of resource capability of network nodes such as Central Processing Unit 

(CPU)/Graphics Processing Unit (GPU). This is especially true for distributed AI 

operations where involved nodes are e.g., UEs, Central Units (CUs)/Distributed 

Units (Dus). 

8. Data: Cross-domain AI use cases require a distributed data-driven architecture 

that is able to connect distributed data domains. Data can be secured via access 

permission and data management can follow regulations for data protection if 

required. 

3 Potential Solutions for Cross-Domain AI 

3.1 Impact on network architecture. 

We have investigated potential technology directions to enable cross-domain AI in 

order to meet the aforementioned requirements. Figure 3.1 provides two possible 

solutions that are built on the O-RAN architecture. The first one focuses on edge 

network scenarios, where a RAN-CN converged architecture can naturally enhance 

collaboration between RAN and CN domain AI while minimizing the overhead 

associated with information flow via the X2 interface. The second solution involves 

leveraging the management domain to enable the collaboration and management of 

multi-domain AI. This can be achieved by introducing a cross-domain AI controller in 

the SMO, which interacts with Non-RT RIC, core network, and other domain-specific  

AI controllers. 
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Figure 3.1 Potential solutions and architecture for cross-domain AI 

3.1.1 Converged RAN-CN architecture  

In wireless networks, the collaborative efforts of CN and RAN are essential to facilitate 

a wide range of AI use cases with distinct requirements. For instance, the optimization 

of mobility management parameters, radio resource management parameters, slice 

resource allocation, and end-to-end QoS assurance necessitates the collection of data 

from both CN and RAN, followed by the implementation of separate policies. However, 

the existing architecture lacks adequate provisions for cross-domain AI. Firstly, the 

existing architecture of RAN and CN poses obstacles to the exchange of cross-domain 

data information. Specifically, RAN can only connect to the AMF in the CN control 

plane through a point-to-point N2 interface, which necessitates the AMF's involvement 

in the forwarding of control data between RAN and NWDAF, resulting in increased 

transmission delays and overhead. Moreover, there is a lack of standardized 

interfaces to facilitate Near-RT RIC/Non-RT RIC interaction with NWDAF. Secondly, 

considering the distributed intelligent deployment, RAN and CN's intelligent functions 

are physically proximate, presenting an opportunity for further integration of logical 

functions between the two. This potential fusion can simplify the network architecture 

and interfaces, eliminate functional redundancy, reduce latency, and mitigate 

unnecessary forwarding overhead. To achieve RAN-CN collaboration/convergence for 

endogenous AI, the following aspects need to be considered from the perspective of 

O-RAN: 

• Consider the analysis of collaboration/convergence requirements and use 

cases, as well as the identification of specific collaboration/convergence 
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functions to facilitate the sharing and coordination of data, models, algorithms, 

etc. between RAN and CN. 

• Identify the impact of collaboration/convergence on O-RAN architecture, 

protocols, interfaces, and procedures. More flexible and efficient O-RAN and 

RAN architectures, such as Service-based Architecture (SA), can be explored 

to better accommodate and support RAN-CN collaboration/convergence. 

Appropriate protocols and interfaces should be devised to facilitate data 

transmission and control. In light of this, the data transmission and collaboration 

workflows subsequent to collaboration/convergence should also be taken into 

account.  

• Explore data security and privacy protection considerations. RAN-CN 

collaboration/convergence entails extensive data sharing and processing, 

making the security and privacy of the data paramount. It is crucial to employ 

suitable security mechanisms and privacy protection strategies to safeguard 

the confidentiality and integrity of user data and network information. 

 

3.1.2 Enhanced SMO for cross-domain AI  

Currently, SMO is capable of providing AI training and model management functions, 

and it sends policy to Near-RT RIC through the A1 interface. However, in order to 

enable coordinated AI capabilities across different network domains, the following 

functionalities could be added to the current SMO:  

• A cross-domain AI control function to handle the management and 

orchestration of AI across network domains. 

• Capability to obtain AI capability information from different network domains 

and enable AI capability exposure. 

• End-to-end AI management and orchestration capability, such as cross-domain 

data arrangement and mapping, AI task identification and decomposition, 

deployment to matching computing nodes, etc. 

• In addition to data collection, model training, and inference, the management 

of model generation, storage, and migration, as well as processes such as AI 

performance evaluation and model updates, are necessary to enhance the end-

to-end lifecycle management capabilities of AI. 

• Support for cross-domain distributed learning, for example, by managing the 

training and inference of vertical federated learning. 

• Capabilities of intent management, such as intent recognition, translation, and 

matching ability, intent conflict resolution capability, and closed-loop control 

capability in a cross-domain AI context. 

• Support energy saving and energy efficiency through cross-domain AI. 
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3.2 AI elements collaboration across different network domains 

3.2.1 Data 

Data is one of the basic elements of AI technology, and achieving cross-domain AI 

capabilities requires the collection and processing of data across different domains. 

The vast amount of data in future networks serves as the foundational basis for cross-

domain AI, while advancements in data transmission and processing technologies 

provide the necessary technical infrastructure for the application of cross-domain data. 

However, it is important to recognize that significant challenges exist with regard to 

ensuring data security and privacy during cross-domain data collection and usage. 

The process of cross-domain AI data collection typically involves decomposing the 

data requirements of cross-domain AI according to the domain of the data source, 

generating cross-domain data collection requirements, distributing them to the target 

domain, and then the target domain collects data in accordance with the domain's 

specific collection requirements. Finally, the entire process of the target domain 

exposes the collected data to other domains with consideration of data security and 

privacy. Specifically, the cross-domain data sharing procedure must at least include 

the authentication and verification process for the demander. 

The cross-domain data processing usually refers to the whole process of handling the 

data collected during the cross-domain data collection process. It generally includes 

data pre-processing processes such as data cleansing, data integration, data 

conversion, data reduction, etc. and data storage process, data using process, and 

finally data disposal process. This process is mainly based on the characteristics of 

mobile communication network data and integrates big data technology and 

communication technology. The Figure 3.2 below is a typical example of a cross-

domain data processing process. 
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.

.

.

Data 

Cleaning

Data 

Conversion & 

Data Reduction

 

Figure 3.2 An example of a cross-domain data processing process 

This example includes the following data processing methods: 

• Data Cleaning: the process of fixing or removing incorrect, corrupted, incorrectly 

formatted, duplicate, or incomplete data within a dataset. 

• Data Integration: the process of combining data from different sources to eliminate 

duplicate and inconsistent data. 
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• Data Conversion: the process of translating data from one format to another 

through normalization, standardization, discretization, and other conversion 

operations to better support data analysis and modeling. 

• Data Reduction: the process of processing data through compression, sampling, 

feature selection, and other conversion operations to better support data analysis 

and modeling. 

• Data Storage: the process of storing the data on storage media for future use. 

• Data Destruction: the process of destroying useless, redundant or old data to 

prevent nefarious data exploitation and reduce the security risks. 

• Data Using: the process of using the data required by cross-domain AI to achieve 

cross-domain AI capabilities. 

This is a typical cross-domain data processing process. In practical applications, data 

preprocessing methods may be different according to the characteristics of data 

collected. For example, in the O-RAN architecture, measurement data in CU/DU, etc. 

(network domain) can be collected by SMO (management domain) with different 

methods (Refer to section 2.2.2 in [16], Therefore, the data preprocessing operations 

for data collected by different methods will be different before they are delivered to 

Non-RT RIC for use. 

 

3.2.2 Algorithm/model 

(1) Common AI algorithms and applications: 

Due to AI/ML’s promising potential in optimizing planning and operations of mobile 

communication networks, 3GPP initiated “Study on enhancement for Data Collection 

for NR and EN-DC” [3] in Rel-17 and both –  “Study on Artificial Intelligence 

(AI)/Machine Learning (ML) for NR air interface” Error! Reference source not found. 

and “Study on Artificial Intelligence/Machine Learning (AI/ ML) management” [10] in 

Rel-18. O-RAN also treats AI/ML as a strategic topic and multiple O-RAN working 

groups, e.g., WG2 (Non-RT RIC) and WG3 (Near-RT RIC), and next generation 

research group (nGRG) are active in introducing AI/ML features to O-RAN. 

Efforts in 3GPP and O-RAN focus on facilitating data collection and analytics [6] [7] 

[8], defining AI/ML terminology including ML model [5] [9] and ML model management 

(training, deployment, inference, performance evaluation/feedback and update over 

standard interfaces) [4] [9]. ML models and algorithms are usually treated as a 

blackbox. They are kept out of the scope of standardization to allow rapid innovation 

and vendor differentiation. However, ML models and algorithms are a critical part of 

the entire AI/ML value chain, so this section attempts to describe them briefly. 

ML models and algorithms usually leverage one or more of the following learning 

methods: 
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• Supervised Learning including Semi-Supervised Learning – learning from 

labeled training data, where input-output pairs are provided. 

• Unsupervised Learning – learning patterns from unlabeled data, discovering 

inherent structures or relationships. 

• Reinforcement Learning – learning based on identification of rewards for a set 

of actions and system states during exploration phase and maximizing reward 

during exploitation phase. This can include supervised learning and deep 

learning algorithms, 

• Deep Learning – learning using multi-layer neural networks like the human 

brain. It is a flavor of supervised learning. 

Following learning techniques could leverage ML models and algorithms: 

• Transfer Learning – imparting learning from one context to another similar 

context. 

• Federated Learning – learning across multiple nodes keeping data local thus 

privacy intact at each node. It also saves on network bandwidth and could be 

useful in cross-domain AI (e.g., across (i) UE and RAN, (ii) RAN and CN, (iii) 

UE, RAN, and CN and finally, (iv) UE, RAN, CN, and management). Currently, 

3GPP is considering a one-sided model (e.g., on UE side, or RAN side, or both, 

with no interaction) and a two-sided model (e.g., on UE side and RAN side 

models interacting with each other). 

Based on the application, ML models and algorithms could be used for: 

• Prediction e.g., Time Series Analysis like Autoregressive Integrated Moving 

Average (ARIMA), Long Short-Term Memory (LSTM) networks, Large 

Language Model (LLM) based transformers. 

• Classification (or clustering) e.g., K-means clustering. 

• Natural Language Processing (NLP) e.g., Language Translation, Named Entity 

Recognition 

• Computer Vision e.g., Object Detection, Facial Recognition 

• Anomaly Detection e.g., Autoencoders 

• Recommendation Systems e.g., Content-Based Filtering 

Prediction is widely used in mobile communication network context. Some examples 

of prediction include Cell Based UE Trajectory Prediction, Predicted Radio Resource 

Status, Predicted Number of Active UEs, Predicted RRC connections, and Energy 

Cost as proposed in [17].  

With the rising popularity of Chat Generative Pre-Trained Transformer (ChatGPT) 

like AI/ML based applications, Generative Models are becoming increasingly 

relevant. Some examples include Transformers, Generative Adversarial Networks 

(GANs).  

Depending on the use case, one or more appropriate ML models and algorithms are 

implemented.  
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ML models are usually deployed as an image, an executable, a set of source files 

including metadata, or any other suitable means. 

The following are potential research topics for future models and algorithms: 

• Application of recent innovations like LLMs (used by ChatGPT)/GANs, 

Reinforcement Learning (RL), Transfer Learning (TL) and Knowledge 

Distillation (KD) in mobile communication network. 

• Trustworthy AI/ML including Explainable AI/ML. While internals of ML models 

and algorithms would continue to remain proprietary, it is paramount to clearly 

explain input-output relationship. Explainable AI/ML plays a critical role in this 

context. Trustworthy AI/ML preserves user and data privacy as well as the 

secrecy of ML models and algorithms. It is evident that Trustworthy AI/ML is 

critical to build trust and confidence about usage of AI/ML in mobile 

communication networks among telecom operators, regulators, and even end 

consumers. 

• More energy efficient ML models and algorithms to meet the future energy 

saving and energy efficiency goals. 

• Algorithms and models that help realize Native AI. 

• Further accuracy improvement of prediction models and algorithms. 

• With the advancement in ML models and algorithms, complexity needs to be 

kept to a manageable level. In addition, the scalability of these models and 

algorithms needs to be ensured for wider adoption. 

• New techniques such as continual learning, causal inference, inverse RL. 

Future ML models and algorithms would need to integrate all these novel and 

necessary concepts and aspects in their requirement, design, and implementation 

phases. 

(2) Model distribution and sharing: 

3GPP SA1 has studied the general principle of AI/ML model/data distribution and 

sharing over 5G system in TR 22.874 [18]. An example of split AI/ML inference across 

different domains can be depicted in Figure 3.3. 
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Figure 3.3 An example of split AI/ML inference 

The following modes attempt to split the AI/ML inference or even the model into 

multiple parts (e.g. cross domains) according to the current task and environment, to 

alleviate the pressure of computation, memory/storage, power, and required data rate 

on both device and network endpoints, as well as to obtain a better model inference 

performance on latency, accuracy and privacy protection. 

•Mode a): Device-cloud/edge split inference 

In this mode, an AI/ML inference operation or model is firstly split into two parts 

between the device and the cloud/edge server according to the current system 

environmental factors such as communications data rate, device resource, and server 

workload. Then, the device will execute the AI/ML inference up to a specific part or the 

Deep Neural Network (DNN) model up to a specific layer and send the intermediate 

data to the cloud/edge server. The server will execute the remaining parts/layers and 

send the inference results to the device. 

•Mode b): Edge-cloud split inference 

In this mode, the DNN model is executed through edge-cloud synergy, rather than 

executed only on either cloud or edge server. The latency-sensitive part of an AI/ML 

inference operation or layers of an AI/ML model can be performed at the edge server. 

The compute-intensive parts/layers that the edge server cannot perform, can be 

offloaded to cloud server. The device only reports the sensing/perception data to the 

server and does not need to support AI/ML inference operations. The intermediate 

data are sent from the edge server to the cloud server. A proper split point needs to 

be selected for an efficient cooperation between edge server and cloud server. 

•Mode c): Device-edge-cloud split inference 

In this mode, an AI/ML inference operation or an AI/ML model is split over the mobile 

device, the edge server, and the cloud server. The compute-intensive parts/layers of 

an AI/ML operation/model can be distributed among the cloud and/or edge server. The 

latency-sensitive parts/layers can be performed on the device or the edge server. 



O-RAN NGRG CONTRIBUTED RESEARCH REPORT 

 <RR-2024-02>                                                                                                                                                            
35 

Privacy-sensitive data can be left at the device. The device sends the intermediate 

data outcome from its computation to the edge server, and the edge server sends the 

intermediate data outcome from its computation to the cloud server. Two split points 

need to be selected for an efficient cooperation between the device, the edge server 

and the cloud server. 

•Mode d): Device-device split inference  

This mode provides a decentralized split inference. An AI/ML inference operation or 

model can be split over different mobile devices. A group of mobile devices can 

perform different parts of an AI/ML operation or different DNN layers for an inference 

task, and exchange intermediate data between each other.  The computation load can 

be distributed over devices meanwhile each device preserves its private information 

locally. 

•Mode e): Device-device-cloud/edge split inference  

An AI/ML inference operation or model is first split into the device part and network 

part. Then the device part can be executed in a decentralized manner, i.e. further split 

over different mobile devices. The intermediate data can be sent from one device to 

the cloud/edge server, or multiple devices can send intermediate data to the 

cloud/edge server. 

Although the above modes are described as in 5G system, the same principle can 

also be applied to the Next G networks. Distributed Learning and Federated Learning 

are considered as two basic methods. 

Distributed Learning 

In Distributed Learning, each computing node trains its own DNN model locally with 

local data, which preserves private information locally. To obtain the global DNN model 

by sharing local training improvement, nodes in the network will communicate with 

each other to exchange the local model updates. 

Federated Learning 

In Federated Learning, the cloud server trains a global model by aggregating local 

models partially trained by each end device. The most agreeable Federated Learning 

algorithm so far is based on the iterative model averaging. Within each training 

iteration, a UE performs the training based on the model downloaded from the AI 

server using the local training data. Then the UE reports the interim training results 

(e.g., gradients for the DNN) to the cloud server via uplink (UL) channels. The server 

aggregates the gradients from the UEs and updates the global model. Next, the 

updated global model is distributed to the UEs via downlink (DL) channels. Then the 

UEs can perform the training for the next iteration. 

There are two ways for model collaboration in cross-domain AI: one is the 

collaboration between different models. Different domains process different sub-tasks 

with different models, while the input and output of the model are related, for example, 

the output of Model 1 serves as the input of Model 2. Another is the collaboration 
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between the same model, where the model is divided into two parts from the middle 

layer based on data location or task type.  

3.2.3 Computing resource  

 (1) Coordinated optimization of computing and communication  

Designing cross-domain AI for computing and communication in wireless next 

generation networks requires a holistic approach that considers the unique 

characteristics of the network, the demands of different applications, and the needs of 

users. 

State/data exchange architecture is an approach to optimize compute and 

communication across different domains in a network. This architecture involves 

exchanging data and state information between different domains, such as the edge 

and the cloud, to optimize resource allocation, reduce latency, and improve application 

performance. The proposed architecture is shown in Figure 3.4.   

 

Figure 3.4 State assisted compute-communication co-design 

As can be seen in this figure, Digital Twin RAN (DT-RAN) and DT-compute are used 

to predict domain specific KPIs and states to be shared with the other domain and be 

used by their own domain controller. DT-RAN and DT- compute can play a crucial role 

in predicting KPIs and states for joint compute and communication optimization in Next 

G networks. These digital twin technologies enable a virtual representation of the 

physical RAN and compute infrastructure, capturing real-time data and simulating its 

behavior.  

By integrating the predictions from both DT- RAN and DT- compute, joint compute and 

communication optimization can be performed. The predicted KPIs and states guide 

resource allocation decisions, communication parameter adjustments, and 

computation offloading strategies. 

Predicted KPIs from communication can be effectively utilized in the compute 

controller, while compute KPIs guide the decisions of the communication controller in 

a joint compute and communication optimization framework. In the compute controller, 

communication predicted KPIs provide valuable insights into the expected network 

conditions, such as latency, bandwidth availability, and congestion levels. This 

information can be utilized to make intelligent decisions regarding compute resource 

allocation and task scheduling. For example, if the communication predicted KPIs 
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indicate high latency or limited bandwidth, the compute controller can prioritize 

offloading compute-intensive tasks to nearby edge servers or cloud resources to 

reduce the processing delay and improve the overall system performance. By 

considering the communication predicted KPIs, the compute controller can optimize 

the resource utilization, enhance application responsiveness, and ensure efficient task 

execution. Conversely, compute KPIs can play a crucial role in the decision-making 

process of the communication controller. These KPIs provide insights into the 

computational capabilities, workload demands, and resource utilization of the compute 

infrastructure. By integrating compute KPIs, such as CPU utilization, memory usage, 

and task execution time, the communication controller can dynamically adjust 

communication parameters to optimize the overall system performance. For instance, 

if the compute KPIs indicate high resource utilization or increased task execution time, 

the communication controller can allocate additional bandwidth or prioritize traffic to 

support the compute-intensive tasks, ensuring timely delivery of data and reducing 

processing delays. By considering compute KPIs, the communication controller can 

adapt the communication strategies, optimize resource allocation, and ensure efficient 

data transfer between compute nodes and end devices. 

By leveraging the reciprocal relationship between communication predicted KPIs and 

compute KPIs, joint compute and communication optimization can be achieved. This 

integration enables a holistic view of the system, where communication decisions are 

informed by predicted compute states, and compute decisions are influenced by 

predicted communication conditions. This symbiotic relationship can facilitate efficient 

resource allocation, improved system performance, and enhanced user experience in 

Next G networks. By considering both communication predicted KPIs in the compute 

controller and compute KPIs in the communication controller, the joint optimization 

framework can dynamically adapt to changing network and compute conditions, 

leading to optimal allocation of resources, and improved overall performance. 

The basic idea behind this architecture is to transfer data and state information 

between different domains in a timely and efficient manner. For example, in a wireless 

network, data can be transferred between the edge and the cloud to optimize resource 

allocation and reduce latency. The edge can process real-time data and perform local 

computations, while the cloud can perform more complex computations and store 

large amounts of data. 

In this architecture, state information is used to keep track of the current state of the 

network, such as available resources, network traffic, and user preferences. This 

information is continuously updated and shared between different domains to optimize 

resource allocation, reduce latency, and improve application performance. 

(2) Mapping AI tasks with computing resources 

In the future, AI will be distributed across various locations in the network, including 

RAN, CN, and management systems, all of which can provide computing resources 

with different qualities. To better provide end-to-end intelligent services and improve 

the efficiency of computing resources, it is necessary to match the requirements of 
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different AI tasks with the corresponding computing resources. Figure 3.5 shows the 

architecture performing this matching in the Cross-domain AI Controller. 

Cross domain AI Controller

RAN  

computing node

CN 

computing node TN AI

  Reporting of Computing 

Resource Information

  Matching of Computing 

Resources

 

Figure 3.5 Matching of computing resources across different domains 

Compared to the core network and management system, the computing resources on 

the RAN side are usually limited. However, its proximity advantage allows it to provide 

lower latency. Therefore, in resource matching for different AI tasks, it is necessary to 

consider factors such as latency requirements, task complexity, and available 

computing resources. For tasks that require real-time response, allocating some 

computing resources on the RAN side can provide lower latency. On the other hand, 

for computationally intensive tasks, it may be necessary to rely on the core network 

and management system to provide more powerful computing resources. 

Therefore, in the matching of computing resources, it is necessary to consider the 

specific characteristics and requirements of the tasks, and comprehensively consider 

factors such as latency, computing power, and resource availability to achieve optimal 

resource allocation and performance optimization. 

First, the Cross-domain AI controller in SMO needs to identify the requirements of AI 

tasks. For complex AI tasks, they can be decomposed into multiple parallel subtasks. 

Then, the cross-domain AI controller needs to obtain AI computing resource 

information from various nodes in the network, such as resource types, computing 

capacity, resource performance, load, etc. Finally, based on the task requirements and 

resource information, the AI tasks can be matched to different computing nodes for AI 

training and inference.  

Besides, wireless network computing power is showing a trend of distributed 

deployment, and nodes such as base stations, network management, Multi-access 

Edge Computing (MEC), core networks, and data centers can deploy computing 

power, achieving a multi-level and three-dimensional distributed computing system at 

the cloud, edge, and device, to meet the compute requirements.  

4 Conclusion 

This research report presents a comprehensive overview of cross-domain AI. It first 

summarizes the current AI-related research and work of different standardization 

organizations, within the RAN, CN, management domain and digital twin domain. Then 

four application scenarios and technical requirements that need to be supported by 

intelligent collaboration in the future are identified. Finally, the report proposes a 
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reference architecture for cross-domain AI, suggesting two potential technical 

solutions for end-to-end intelligent management and RAN-CN convergence. In the 

future, the 6G network architecture, cross-domain collaboration methodology, 

interface design, and management process to support AI collaboration can be studied 

in depth to enable a wide range of specific scenarios and use cases. 
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