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Executive summary 

The next Generation Research Group (nGRG) is a task force within O-RAN ALLIANCE, which 

focuses on research of open and intelligent RAN principles in 6G and future network standards.  

Research stream (RS)-01 explores the area of Digital Twin RAN (DT-RAN) use cases and 

performs an analysis of the potential gaps in the O-RAN standards which are then provided 

as inputs to next DT-RAN research phases and other research streams.  

Section 1 provides some background information before DT-RAN is introduced in more details 

in Section 2. Section 3 provides the use case analysis including background information, 

motivation, and proposed solutions for each DT-RAN sub use cases including DT-RAN for 

AI/ML training, evaluation and testing, DT-RAN for network testing automation, DT-RAN for 

network planning, DT-RAN for network energy Saving, and DT-RAN for site specific network 

optimization. The use cases addressed in this version of the document come as the top 5 use 

cases suggested by all participating companies through a comprehensive survey conducted 

in RS-01. Section 4 provides a conclusion of the use case study results.  
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1 Background 

As the research community across industry and academia continues to shape the scope of 
the sixth generation (6G) wireless networks, it has become apparent that many novel 
applications and services will emerge at its onset, ranging from extended reality, immersive 
multimedia, holographic communication, network and computing convergence, 
multidimensional sensing, pervasive intelligence, connectivity for industry 4.0 and beyond [1]. 
The Artificial Intelligence (AI)/ Machine Learning (ML) based technology for Radio Access 
Network (RAN) automation, management, orchestration, and optimization represents a key 
factor for the foundations of the O-RAN architecture which is also one of the key enabling 
technologies for the future 6G evolution. Indeed, Non-Realtime (Non-RT) and Near-Realtime 
(Near-RT) RAN Intelligent Controllers (RICs) are currently the two main hosts of these 
technologies enabling RAN intelligence. However, there are still many problems and 
challenges which need to be addressed in the entire industry before an AI/ML-powered 
solution can be commercially deployed at scale and start to create real business values in the 
future. Enabling this wide range of use cases requires addressing a diverse set of 
requirements, which would be difficult to meet with the previous generations of wireless 
networks. To that end, various state-of-the-art technologies have emerged as key enablers for 
6G use cases, among which the digital twin (DT) has stood out as a highly promising candidate 
to facilitate the design, analysis, operation, automation, and intelligence of 6G wireless 
networks [2]. 

 

 

2 Introduction  

A Digital Twin network (DTN)* is a digital replica of the full life cycle of a communication 
network, or part(s) of a communications network, including, for example, any combination(s) 
of physical network elements and components, virtualized/cloud-native (containerized) 
network functions (VNFs/CNFs), physical hosts for such VNFs/CNFs etc. Unlike conventional 
network simulators, the DTN supports communication between the physical network and the 
virtual twin network to achieve real-time interactive mapping. Inspired by the great potential of 
DTs for wireless networks, several initiatives have emerged in standards bodies to develop 
initial guidelines for DTNs. ITU-T has released a recommendation that describes the 
requirements and architecture of DTNs [3]. ITU-R has published a report on future technology 
trends of IMT systems towards 2030 and beyond with a list of key emerging use cases for 6G 
and listed DTNs as one of the important candidates in that category [1]. In particular, ITU-R 
recommends a top-level design of the DT for RAN to be considered first, before extending the 
scope to beyond the RAN. Accommodating diverse physical RAN networks, DT-RAN can be 
designed as a first candidate for DTNs, with "the ability to agilely perceive and adapt to the 
complex and dynamic environment and achieve network autonomy for its full life cycle in its 
planning, constructing, monitoring, optimizing, and healing phases" [1].  

Creating a realistic and scalable digital replica of the live RF propagation channel between the 
network and the UEs is also an important part of DT-RAN research. Many of the AI/ML use 
cases [12] require this, such as for coverage optimization, interference management, mobility 
and handover optimization, traffic steering, QoS/QoE optimization, mMIMO beam optimization 
and energy/power management etc. The RF propagation channel as part of the DT-RAN is 
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sometimes called out explicitly in the industry as DT-RF or DT-RAN-RF, since it is an 
independent research area focusing on the RF propagation and antenna modelling 
technologies. Research on DT-RAN should include DT-RF due to its importance in the 
aforementioned wide range of use cases.  

Network virtualization/cloudification represents one of the most important technologies and 
advantages in O-RAN network. Starting from 5G and moving towards 6G, the orchestration 
and managing of cloud infrastructure, virtual network functions and network slices will be done 
through advanced AI/ML technologies for the best performance and energy consumption in 
complicated deployment scenarios of cross domain verticals. Creating an accurate digital 
replica of the cloud infrastructure that hosts the RAN functions is also an important part of the 
DT-RAN research. 

While the DTN related activities and development in other standards fora are instrumental, 
application of DTN technologies to O-RAN is vital..  Enabling DTs for generic RAN which may 
include the RF propagation DT, RAN function DT and RAN Cloud DT could be a good starting 
point, and extending that work with augmentation of O-RAN specific aspects would make 
DTNs a reality for the open RAN ecosystem as it steps into the era of 6G.  

[*] NOTE: The term “network digital twin” (NDT) has also been used in the industry referring to 
the same concept as digital twin network (DTN). 

 

3 Use Cases of DT-RAN 

3.1 Use Case 1: DT-RAN for AI/ML Training, Evaluation and Performance 
Assurance  

3.1.1 Background Information 

Network disaggregation in 5G networks has increased the heterogeneity of the network 
components, infrastructures, environments, and domains. This heterogeneity poses a 
challenge for network management. For example, the network components may come from 
different vendors, the infrastructures may use different hardware types, the environments may 
span across multiple clouds, and the domains may have different protocols. In 6G networks, 
the heterogeneity and complexity will be even higher due to further disaggregation and hybrid 
cloud adoption. To meet the highly diversified service requirements in the future while reducing 
the network cost and energy consumption in such a heterogeneous scenario, an intelligent 
solution is demanded. Such a solution should be able to combine various multi-vendor network 
functions to optimize the trade-offs between performance, cost and energy.  AI/ML becomes 
a powerful tool that can tackle the complex network topologies and problems that may be 
otherwise unsolvable today.  

AI-powered intelligent solutions have the common problem for data generation, training, and 
solution validation. The use of network DTs which create digital replica of the real network is 
a promising approach to address these problems.  

3.1.2 Motivation 

The AI/ML based technology for RAN automation, management, orchestration, and 
optimization represent a key success factor of today’s O-RAN architecture. However, there 
are still many problems and challenges that need to be solved in the entire O-RAN ecosystem 
for the future success of O-RAN technologies. 
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Challenge1: Data for training and testing AI/ML are key factors determining performance of 
future networks. However, access to data from operator’s radio access network (O-CU, O-DU, 
O-RU) for AI/ML model training and testing is limited. 

Challenge2: Behaviors of AI/ML solutions are difficult to have 100% control on. Performance 
needs to be assured with run-time validation without impacting the operation of the underlying 
live physical network.  

Challenge3: 3rd party application involvement exposes challenges on solution integration, 
including solution on-boarding, testing, maintenance, and conflict management. These remain 
as a key challenge in RIC.  

Challenge4: AI/ML performs differently in different network environments. There is no 
uniformed and reproducible platform for people to evaluate and benchmark the performance 
of AI/ML solutions from multiple 3rd party vendors and multiple release builds in pre-
deployment phase.  

 

AI/ML model training is not simply a one-time offline process. It is normally a continuous 
optimization and evolution process through continuous interaction of the AI/ML model with the 
targeted network, and continuously repeating the model training, model inference, 
performance feedback collection and retaining process. In the current AI/ML workflow design, 
this entire AI/ML model training, testing, and continuous optimizing process is done based on 
data collection from and interaction with the real physical network which is: 

• Risky: the AI/ML could significantly impact the network performance adversely during 
the continuous optimization process (iterations of training, inference, and retraining) 
due to lack of effective validation environment prior to provisioning the changes in the 
network. 

• Slow: the interaction with the physical network for continuous model optimization is 
very slow which leaves the network underperforming and at risk with unoptimized 
AI/ML models for a long time and makes the AI/ML training a long, expensive, and 
unaffordable process.  

• Costly: for training the initial AI/ML models for some of the use cases, it needs to build 
the entire physical network with a large number of mobile users as a test bed first and 
run it for a long time to collect enough training data. 

• Limited scenarios and data set: The training and testing scenarios limit to what is 
seen so far in the real world, but AI/ML models could still make mistakes in other 
scenarios unseen before. In other words, without sufficient richness in the dataset, the 
trained AI/ML model may not be generalized enough to cater to diverse scenarios.  

• Untrustworthy: Even a well-trained AI/ML model could make a serious mistake 
sometime. 

DT-RANs provide a digital replica of a real-world environment and is deeply integrate with the 
O-RAN network to interact with the AI/ML workflows - model training, testing and continuous 
optimization. DT(s) will fundamentally overcome the problems mentioned above which will 
then contribute to delivering more performant AI/ML solutions in future O-RAN network. 
Furthermore, the performance and reliability of the AI/ML solutions can be continuously 
monitored and assured during their real-time inference stage with a DT. Any control command 
and policy generated from AI/ML applications can be validated against the DT first before 
forwarding it to the real physical network to avoid any potential negative impact to real users’ 
experience.  

3.1.3 Proposed solution 
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The DT concept can be applied to various entities in mobile networks, such as users, services, 
or network infrastructure. Each entity has its own DT that contains relevant information, 
updates according to specific rules, and operates on different timescales. There are different 
ways to realize DT models, for instance, centralized DT, or distributed DT. However, these 
DTs also have some common features, such as being implemented as software models of the 
network, not processing actual data flows but mimicking the network behaviors, or multiple DT 
models being managed by an orchestration system. Therefore, there is a need to develop a 
method for generalizing and specializing DTs. Different types of DTs require different 
information, rules, and timescales. A single solution will not be suitable for all of them. 

A network DT can be used to facilitate the training and validation of AI/ML models used by 
network components in 6G networks. As shown in Figure 3.1.1, the Network DT model is used 
in an AI/ML framework, which forms the cognitive plane to support the needs of AI models in 
network functions (NF), management and orchestration. The cognitive plane aggregates 
AI/ML model management, model training and deployment for different network components 
and entities in a unified, logically separated plane. To avoid an over-complex solution, the 
framework of framework concept is introduced to build the AI/ML framework for individual 
domains with similar design principles and toolboxes while providing necessary connections 
among different AI/ML frameworks for joint processes. For instance, RAN and service 
orchestration will use separate AI/ML frameworks to support AI/ML functions. The AI functions 
would be dynamically orchestrated, combining the zero-touch and the CI/CD approaches. 

 

Figure 3.1.1 Network DT assisted AI/ML framework for 6G networks [11] 

To understand the AI/ML framework, we explain the main components and their respective 
functionalities comprising the cognitive plane as follows: 

• AI Function Orchestrator is a key component of the AI/ML framework that governs 
AI/ML models in different network components and ensures the seamless integration, 
and deployment of AI/ML models within the network functions. 

• The Model Management is used to manage various AI/ML models that can be utilized 
by the network functions within the system.  

• The Model Training is a component of the AI/ML framework that handles the training, 
retraining, or replacement of AI. This component is responsible for fine-tuning the 
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learning process, first utilizing the DT approach, and then gradually refining the model 
in the real twins. 

• The AI/ML Model Repository is a repository that stores trained AI/ML models and their 
associated metadata. This database allows for easy access, retrieval, and deployment 
of AI/ML models within the network functions.  

• NDT for Sub-Systems module is used to support AI/ML model training and evaluation. 
The NDT will provide the representation of network entities at different abstract levels 
to support the development and validation of AI models. It can generate network 
settings and training data for pre-training and validation of AI models without the need 
to interfere with real operation of the network.  

The AI/ML framework provides a uniform platform to support AI/ML functionalities in different 
network domains, segments, and components. Thus, the DTs for sub-systems need different 
granularities and implementations to serve the purpose of training and validation. These twins 
have connections and common features/interfaces. Applying object-oriented programming 
idea, the realization of DTs starts from the hypothesis of a base class NDT. The core APIs are 
defined to operate twins themselves and to provide information to/from a resource 
orchestration system. It could be further specialized to NDT for sub-systems (e.g., NDT-RAN, 
NDT-Core, NDT-Edge, NDT-cloud resource layer) with multiple inheritance being a natural 
technique to “mix in” different aspects.  

In addition to generalizing/specializing, another way that an NDT for Sub-System can 
manipulate information is by combining data from other NDTs. For example, a NDT that 
represents a group of users can show information about how all users are moving together in 
a location, indicating the traffic demand of all users, and providing it to network management. 
Or a NDT, at the highest level of a combination hierarchy, can show information about a whole 
network (e.g., average data rate, coverage area, etc.).  

The proposed system should evaluate the impact of different aggregation levels, balancing 
the trade-off between overhead and usefulness. The twins can have different modes of 
operation. In the simplest mode, they act as static data repositories, receiving updates from 
their twin and queries from, for example, an orchestrator. In a more advanced mode, they 
perform semi-active data processing, such as predicting user mobility or service resource 
requirements for varying load patterns. 

Following the general AI/ML framework above, Figure 3.1.2 shows a high-level architecture 
integrating DT into O-RAN AI/ML framework that can resolve key challenges seen in AI/ML 
training, evaluation, and real-time performance assurance. 
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Figure 3.1.2 NDT assisted AI/ML framework in O-RAN 

DT is important to address the challenges listed in the section 3.1.2. It is placed here and 
interacts with both the O-RAN network and AI/ML models.  

DT can play several roles:  

• Performance monitoring and assurance using sandbox environment provided by 
DT to avoid AI/ML solution harming the physical network in ways not anticipated 
otherwise. 

• Training data generation when the live data from the O-RAN network is not sufficient. 

• Root cause analysis  

• Enhanced network health data visualization including the visualization of predicted 
network health. 

There are several building blocks used to construct the DT and make it open for extension as 
a system-of-systems. These include: 

• The modelling entities that create accurate digital replicas of different aspects of a 
RAN network. This includes the mobility/RF model for replicating the propagation 
channels and user mobilities, the traffic model for replicating the traffic/service 
demands and their QoS constraints, the RAN model for replicating the RAN functions 
and the cloud model for replicating the cloud resources.  

• The RAN scenario generator powered with AI/ML technology which automatically 
parameterizes the models to generate multitude of training scenarios to challenge the 
AI/ML models under training. The RAN scenario generator can automatically evolve 
itself based on the performance feedback from the RAN analytic module, generating 
increasingly challenging training data sets for the AI/ML intelligence and performance 
to continuously improve.  

• Advanced visualization to visualize the data needed by the network operators for 
performance monitoring and system diagnostics.  

The DT may be integrated into SMO/Non-RT RIC or Near-RT RIC frameworks where SMO 
services (SMOSs), rApps or xApps can access the DT function via standardized interface, e.g. 
SMOS APIs, R1 service APIs or Near-RT RIC APIs, for AI/ML model training, 
testing/evaluation, and real-time performance assurance. The models are synchronized with 
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the live physical network via the data captured from the O-RAN standardized interfaces such 
as O1, O2 and E2. 

3.2 Use Case 2: DT-RAN for Network Testing Automation  

3.2.1 Background Information 

There is an urge to develop DT-RAN frameworks for network automation to integrate, deploy 
and test RAN components reliably and in an automated fashion enabling multi-vendor 
interoperability and pre-deployment testing and integration of Open RAN equipment, including 
RUs, DUs, and CUs along with their corresponding interfaces. The DT-RAN will benefit from 
the flexibility provided by wireless network DTs enabled by the wireless network emulators, 
e.g., to test equipment in a repeatable way; on heterogeneous propagation environment and 
conditions, namely Radio Frequency (RF) scenarios; and as part of a larger Open RAN 
network (e.g., with several virtualized components from multiple vendors) as opposed to tests 
performed on single functionalities only in isolation. DT-RANs go beyond creating a virtual/DT 
representation of the physical environment (i.e., high-fidelity 3D models and RF scenarios), 
and should include protocol stack twinning, as well as integration of commodity equipment in 
the DT. This allows stakeholders to reliably deploy, integrate and test full protocol O-RAN 
solutions with hardware-in-the-loop and heterogeneous emulation scenarios. This would also 
be beneficial, among others, to de-risk AI/ML decisions in the physical/real-world environment 
by testing them on its digital counterpart first (which acts as a sandbox where “dangerous” 
configurations can be tested without monetary penalties due to violations of SLAs or due to 
outages), and at a fraction of the cost compared to similar approaches that rely only on “in real 
life” data collection and model training. 

3.2.2 Motivation 

Automated and continuous testing of O-RAN components (e.g., CU, DU, RICs, xApps, to 
name a few) is a necessary component to unlock the true potential of disaggregated, software-
driven, and multi-vendor next-generation wireless networks. As of today, testing wireless 
systems is a labor-intensive, manual effort. Indeed, while Continuous Integration 
(CI)/Continuous Deployment (CD) and automation are widely used in cloud systems, existing 
techniques cannot be directly applied to cellular systems, which come with heterogeneous 
devices, spectrum and radio requirements, distributed deployments, need for high 
performance and real-time processing, and complex technical specifications to parse and 
comply with [13]. DT-RANs can facilitate testing procedures, and this requires automation 
pipelines that make it possible to easily (and rapidly) instantiate disaggregated gNB 
components, RICs, xApps/rApps and other network components without any manual 
intervention. This is particularly important if we consider those cases where DTs are used to 
provide a real-time twin of the network where different spectrum and network policies can be 
tested on the twin before being enforced on the production network. For example, one can 
use the DT to test multiple cell configurations (e.g., small/macro, spectrum policies, ON/OFF 
cell activation) in parallel and determine the best configuration under the current operational 
conditions (e.g., network load, UE mobility and traffic profiles, SNR levels, to name a few). 

Automated and continuous testing will increase the robustness of the wireless supply chain 
by allowing swift and continuous integration of new equipment and functionalities from multiple 
vendors in large Mobile Network Operator (MNO) networks but also in smaller private 5G 
deployments for new vertical markets. It will also enable a continuous cycle that allows for the 
validation of new features and code as soon as they are added to the network, before 
deployments are available, but still in a complete, end-to-end Open RAN sandbox. In this 
context, DT-RAN will enable reliable, repeatable, cost-efficient, and agile testing of the RAN 
components. 

3.2.3 Proposed Solution 
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This can be achieved by developing a pipeline for creating and evaluating virtual wireless 
worlds, and via an automated protocol stack twining framework for continuous testing of 
standards-based 5G RAN. Moreover, we need to establish a real-time networking 
infrastructure between the real and virtual worlds with APIs to test fidelity across the twins and 
develop RAN Intelligent Controller solutions. Finally, we also need to develop a platform for 
seamless integration of commodity CUs/DUs/RUs to the DT emulation system, perform 
required performance, security and interoperability testing, and produce testing results. The 
envisioned DT-RAN can benefit from and expand on the existing Open RAN testing facilities 
such as the Colosseum, the world’s largest wireless network emulator at Northeastern's 
Open6G Research & Development center.  

Example use-case: Colosseum Testbed Extensions (available to O-RAN ALLIANCE 
community): The Northeastern’s Open6G team will plan to expand the capabilities of 
Colosseum, the Open RAN DT and the world’s largest wireless network emulator with 
hardware-in-the-loop (colosseum.net), and add both dynamic user interactions and near real-
time ray-tracing scenarios through newly added GPU hardware, thus enabling high-fidelity 
Open RAN testing at heterogeneous virtual wireless environments with hardware in the loop. 
On the protocol stack twinning, the proposed pipeline will follow CI/CD best practices---which 
are already used to manage the internal components of Colosseum---to replicate software 
protocol stack of the physical twin in the digital domain, and to perform automated testing of 
Open RAN components and interfaces through Colosseum automated batch jobs [13]. 

 

Figure 3.2.1 Emulation-based Open-RAN DT framework for 6G networks, with support 
of RF, protocol, and AI for DTs 

The system will also allow stakeholders to integrate and test commodity Open RAN devices--
-CUs, DUs, and RUs. We have successfully investigated the integration of commercial 
products for large-scale testing on Colosseum, for multiple Industry Partners in the past, 
including a proprietary intelligent jamming system [4], customized Xilinx-based implementation 
of Software Defined Radios (SDRs) [5], and commodity Cellular Vehicle to Everything (CV2X) 
radios in a sponsored project with the U.S. Department of Transportation [6].  

Finally, this DT framework can be connected to the real-world deployment and stream relevant 
KPI to the physical twin. This will build on the experience coming from the ongoing integration 
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between the Colosseum emulator and the Arena over-the-air testbed and extend into physical 
or private virtual segments for integration with stakeholders' sites. 

All the above procedures require automated pipelines to simplify the way these configurations 
are tested, so as to minimize the time needed to determine the best configuration and transfer 
it to the production network. A possible approach to enable such automation is to leverage 
microservices, containers and cloud-based software architectures (such as Kubernetes, 
Docker, Linux Containers (LXC), Virtual Machines, OpenShift) to define automated 
procedures that process a high-level intent (e.g., specifying the physical deployment to be 
twinned) and converting it into multiple twin instances that in parallel instantiate and test an 
individual configuration. 

3.3 Use Case 3: DT-RAN for Network Planning  

3.3.1 Background Information 

A Digital-Twin (DT) is a precise representation of a real-world environment in a virtual model. 
The virtual model (alias DT) can be used for studying the impacts of geometry of layout, type 
of objects and material of objects/surfaces on the channel behavior. 

In the wireless world this can be used as an effective tool for planning of physical network 
node (TRU) placements, and projection of expected network performance for a given 
deployment layout. 

A DT can be evolved/updated based on the measurements, learnings, and changes from the 
real-world environment. A DT supports two-way communication between the real world and 
virtual world to achieve real-time interactive mapping and closed loop control. A DT can 
simulate scenarios in real-time or offline. 

3.3.2 Motivation 

A DT can help in optimal network planning for a given layout, user device density and traffic 
profiles. It can model various deployments like (not limited to) Indoor, Enterprise, Factory and 
Warehouses, consisting of 3GPP (FR1, FR2) and/or non-3GPP (Wi-Fi) technology networks. 

One can design algorithms which can produce output in the form of network node (TRU) 
density, node placement locations, configurations, and corresponding Key Performance 
Indicators (KPI) for a given layout. 

Goal (Network Planning) – Finding optimal network deployment options for minimal 
deployment/operational costs meeting all criteria of Throughput/Latency/Reliability/Energy 
Efficiency. In addition, a DT can help in studying the impacts of mobility, traffic offloading and 
Dynamic Tx power adjustment configuration/policies before deploying those configurations & 
policies in a real network. 
3.3.3 Proposed Solution 

A real-world environment can be mapped into a virtual model with different level of details. 

In a simplistic model one could map the physical characteristics of a layout and simulate/study 
wave path propagation. Such a twin can be used to develop better channel prediction, link 
adaptation, beam forming algorithms. 

In a more complex model one could map not only the physical characteristics of a layout but 
also captures the network infra details and simulate/study scenarios of access procedures, 
beam management, network configurations and application specific behaviors. End-to-end 
scenarios can be simulated for user experience, performance, and reliability. 

A DT can be built comprising of the following: 
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• Generating virtual models of real-world layouts using advanced computer vision 
techniques. One can use inputs from various sources like LiDAR, 2D/3D Images, 360 
Videos to identify objects, materials, range and create their twins in the virtual model. 

• Using existing CAD designs of the layout and adding objects and materials to make 
the virtual model precisely close to the real-world layout. 

• Adding twins of the communication network nodes to the virtual model. For example, 
UE & Network simulators for 5G and Wi-Fi. 

• Adding twins of standard and/or custom traffic generators or the actual traffic 
generators to complete the DT. E.g., Proprietary Enterprise Applications. 

• Communication bridge is defined between the real and virtual world. Network 
configuration, policy, AI/ML models are deployed from DT to the real network. The real 
network sends back collected data to DT for virtual model enhancements/updates. 

Figure 3.3.1 Virtual model for Warehouse & Office layout 

NOTE 1: Virtual model for Warehouse & Office layout in Figure 3.3.1 was created using 3D 
modelling software, and radio channel simulation was done using Wireless channel modelling 
software. 

NOTE 2: Traffic generators (Apps) for Warehouse & Office layout in Figure 3.3.1 were created 
using both 3GPP defined (refer [9], [10]) and custom traffic profiles. E.g., Custom AR/MR Head 
Mounted Devices (HMD) for Warehouse management. 

Input Parameters: 

DT of a real network requires following inputs to run simulations for defining optimal traffic 
offloading, enhanced mobility, and dynamic Tx power algorithms, 
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• Application Requirements 

o Required throughput, Latency/Delay bounds and reliability. 

• Network/UE Requirements 

o User device density, traffic profiles and locations 

o Network & UE capability configurations (RATs, Antennas, Band Support, etc.) 

o Network node (5G, Wi-Fi) density and location 

o Monitored network node capacity in terms of throughput & latency. 

Output parameters: 

DT is used to simulate end-to-end traffic scenarios at every possible location in the network 
layout with different types of storage materials and storage occupancy. The simulations are 
used to do a lot of ‘What-If’ analysis and define thumb rules for designing a wireless 
communication network for Warehouse geometries. DT also generates a lot of synthetic data 
on multipath channel responses, pathloss, inter-cell interference, inter-device interference, 
etc., which are used for training AI/ML algorithms to provide: 

• Optimal Handover triggers based on UE location & direction. 

• Optimal threshold for network node (Wi-Fi Access Point/5G gNB) loading. 

• Triggers for traffic offloading between network nodes (both intra/inter-RAT). 

• Tx power recommendations for overall reduction in interference without creating 
coverage gaps. 

These algorithms/models/Thresholds/Tx powers are deployed in the real-world network, and 
statistics/data are collected to provide feedback to DT. 

3.4 Use Case 4: DT-RAN for Network Energy Saving  

3.4.1 Background information 

In the dynamic landscape of telecommunication networks, the integration of DT emerges as a 
transformative approach. This section explores the motivations and strategies behind 
leveraging DT for energy savings and delves into the evolving paradigm of O-RAN ALLIANCE 
to enhance overall energy efficiency. DTs, heralded as the next generation of network 
modelling tools, offer virtual replicas of real-world environments. Their applications extend to 
studying energy consumption, optimizing resource usage, and forecasting behaviour based 
on traffic fluctuations and user dynamics. As the industry transitions to 6G, sustainability 
becomes a central tenet, with a keen understanding that energy consumption significantly 
impacts operational costs, especially in the Radio Access Network (RAN). This section 
underscores the industry's response to the environmental impact of network operations. 
Efforts, such as the adoption of renewable energy sources and the implementation of energy-
efficient design elements like sleep mode, are acknowledged. However, the study posits that 
more rigorous strategies are needed to align with industry goals of achieving Net-Zero 
emissions by 2040-2050. An analysis of wireless network breakdown into key areas, with the 
RAN consuming a substantial portion (50% in 5G), highlights the pivotal role of RAN in overall 
energy usage. O-RAN is introduced as a promising avenue for improving energy efficiency, 
emphasizing its prospects and challenges in design, development, and operational 
considerations. The European Telecommunications Standards Institute (ETSI) specifications 
[ ETSI ES 203 228 and ETSI ES 202 706-1] focusing on energy efficiency and power 
consumption measurement, are detailed. Ongoing work on energy efficiency within O-RAN is 
highlighted, emphasizing its high priority in industry initiatives. 
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3.4.2 Motivation 

The integration of DT in the network represents a critical strategy for reshaping energy 
efficiency within telecommunication networks. This deployment is spurred by a pressing need 
to confront the intricate challenges inherent in pursuing optimal energy efficiency without 
compromising superior network performance. 

At the core of this approach is the comprehensive modeling capability of DTs, which creates 
a detailed digital replica of the physical network. This modeling extends to various aspects of 
the network environment, offering an emulated version that allows for non-disruptive analysis, 
evaluation, and optimization of design and operational options, particularly in the context of 
energy savings. 

Furthermore, DTs play a pivotal role in evaluating diverse energy-saving strategies within a 
virtual model. This mimicking capability is instrumental in exploring what-if scenarios, 
providing stakeholders with insights into the impact of different strategies on the network. The 
virtual playground for experimentation empowers decision-makers to refine and optimize 
energy-saving initiatives. 

The motivation for leveraging DTs in energy savings extends to their ability to estimate optimal 
models and thresholds through simulation and analysis. This continuous analysis enables 
stakeholders to strike the right balance between energy savings and end-user Quality of 
Service (QoS). 

As the telecommunications industry aligns with global sustainability goals, DTs become 
integral in driving the sector towards sustainable practices. By offering a platform for virtual 
experimentation and scenario analysis, DTs empower decision-makers to make informed 
choices that harmonize the demand for energy savings with the imperative to meet end-user 
expectations. 

Moreover, the integration of DTs in energy savings is underpinned by their inherent capability 
to enhance network performance. Insights into the impact of energy-saving strategies on QoS 
enable Communication Service Providers (CSPs) to adopt a conservative yet effective 
approach, ensuring energy savings without compromising the end-user experience. 

Recognizing challenges associated with the implementation of energy-saving solutions, DTs 
provide a platform for CSPs to evaluate and fine-tune strategies. For example, DTs allow the 
simulation of underutilized resource shutdowns and their impact on end-user experience, 
mitigating suboptimal levels of energy savings. 

In essence, the motivation behind incorporating DTs in energy savings use cases lies in their 
transformative capacity to evaluate, analyze, and optimize various strategies.  

3.4.3 Proposed solution 1  

The DT plays a crucial role in achieving optimal network energy savings, influenced by a blend 
of environmental, economic, and operational factors. It models diverse energy-saving 
strategies, simulating them within the DT network to determine optimal models and thresholds 
without compromising end-user Quality of Service (QoS). Evaluating overall network energy 
efficiency is essential, weighing the energy consumed by DT platforms against the gains. 
Literature research conducted assumes DT energy consumption is minimal compared to the 
achieved benefits, although comparing this consumption is beyond the study's scope. The 
energy-saving solution involves shutting down underutilized resources, posing challenges 
even with current AI/ML solutions, as runtime control and guaranteed 100% performance are 
difficult. Consequently, Communication Service Providers (CSP) opt for a conservative 
implementation, resulting in suboptimal energy savings. 
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The DT virtual replica will be mapped with real-network entities, environments, and their 
behavior. The real-time data is being collected from the network for traffic patterns and current 
level of QoS to represent the network behavior and patterns.  
 
The DT application will represent the current state of the network. The user should submit its 
power saving requirement to DT and the DT runs various scenarios iterations to arrive at 
optimal state of the network for energy saving and analyzes its impact on network 
configuration changes, coverage, traffic migration and end-user QoS level.  The DT application 
will leverage AI/ML techniques and model representation to arrive at an optimal state and can 
push the target parameters and configuration changes to the network to realize it through 
network configurator. 

 

Figure 3.4.1 DT use-case workflow 

Input parameters: 

The DT may require the following inputs to replicate the real network in virtual model: 

• Network configurations and topology. 

• User device density, traffic profiles. 

• Network & UE capability configurations (RATs, antennas, band Support, etc.). 

• Specific service/user level SLAs. 

• Traffic patterns/ KPIs and power consumption datasets. 
 
Output parameters: 

DT is used to simulate end-to-end energy saving scenarios at every possible location in the 
network with different strategies, algorithms, and thresholds. The simulations are used to do 
a lot of ‘What-If’ analysis and define thumb rules for arriving at optimal strategies, algorithms 
and thresholds for each system, module, or resources to achieve maximum energy savings 
without compromising the end-user QoS performance.  

• Optimize the thresholds for shutting down resources. 

• Optimal traffic/workload migration levels. 

• Triggers for traffic offloading between network nodes (both intra/inter-RAT). 

• Tx power recommendations for overall reduction in transmit power without creating 
coverage gaps. 

• Criterions for wake-up of resources. 

3.4.4 Proposed Solution 2  

In this network energy-saving use case, the RAN shall simultaneously fulfil multiple 
requirements. On one hand, requirements from operator’s customers specify a certain level of 
QoS to be met for specific applications. On the other hand, requirements from the network’s 
operator, aim to optimize energy efficiency, minimizing energy consumption.  
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The complexity of the multi-objective optimization problem is exacerbated by the dynamicity 
of the RAN environment under which it shall be solved. In this scenario, users are constantly 
moving, and applications change their traffic distribution frequently. Hence, techniques that 
can use available RAN observability to deal with multiple (possibly conflicting) requirements 
are needed. 

The intent is the formal specification of all expectations including requirements, goals, and 
constraints given to a technical system [7]. Using intent-based management the procedures 
for configuration of the RAN are transformed. Rather than manually setting technical 
parameters such as hand-over thresholds, this approach empowers service providers to 
specify the goals and required characteristics of a connectivity service using intents, including 
how to prioritize across users and services in conflict situations.  Figure 3.4.2 shows the SMO 
receiving two intents to satisfy: QoS maximization from an application and energy-savings 
maximization from the CSP. 

 

Figure 3.4.2 Intents and SMO: different, possibly conflicting, requirements are 
specified 

Intents are represented in a machine-readable format (e.g., RDF) to allow machine 
interpretability and machine-to-machine communication. 

Following the collection of requirements based on the received intents, intelligent agents within 
the network may propose actions to fulfil the requirements. These actions typically involve 
changes in the configuration parameters of the network, for example, adjusting the maximum 
transmission power of the radio base stations, or fine-tuning microsleep durations, etc. DT 
technologies provide a safe environment to evaluate the impact that each of these actions on 
the network. Specifically, DTs can be used to predict, given a certain configuration, the impact 
of actions on network KPIs, hence allowing informed decision-making for the controller 
responsible for decisions. This is important not only for determining the ability of a proposed 
action to fulfil the requirements as set by the intents for the specific application, but also for 
the impact that this action has on other intents that need to be fulfilled by the network. 

In Figure 3.4.3, a DT continuously collects data from various real-world entities (e.g., power 
usage, resource utilization) but also traffic patterns and the current level of QoS. The observed 
state is used to update the functional model of the system’s representation, allowing for the 
estimation of a new state based on the model. Consequently, the DT can be queried to 
respond to “what if scenarios” or be used as a predictor for proposed configuration actions.  
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Figure 3.4.3 DT capabilities 

Benefit of O-RAN architecture: 

The main benefit of the O-RAN architecture is that it already provides a framework for hosting 
(multi-vendor) applications. Such a framework can be extended to host DTs.  

As Figure 3.4.4 shows, DT instances can be hosted in the SMO in the form of rApps as the 
R1 interface can already support easy onboarding of multi-vendor applications [14].    
 

 

Figure 3.4.4 DT in the Non-RT RIC 

There are two ways DTs can play a role. 

The first is when the automation App uses internally a DT to perform decision-making. Indeed, 
O-RAN Apps steer the RAN behavior to certain targets by sending A1 policies. In the Near-
RT RIC, xApps use E2 interface to control the RAN functionality (controlling E2 nodes 
operation) and aim to achieve the targets/objective received in the A1 policies from the Non-
RT RIC. In this case, since the DT is used internally by the rApp, no need for standardization 
is required. 

The second case is when the DT exports functionalities to external (management) entities 
(e.g., other rApps, OSS) as in Figure 3.4.4. In this case, it needs to be investigated what are 
the interfaces and data to be standardized to allow multi-vendor interoperability of DTs. 

3.4.5 Proposed solution 3 

The introduction of 5G technology marks a significant shift in mobile communications. This 
section explores the strategic necessity of optimizing energy efficiency while upholding 
network performance and user experiences. A major concern is the substantial energy 
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consumption of base stations (BS) in conventional mobile networks according to GSMA 
reports. To address this, innovations from the 4G era, like carrier shutdown and channel 
shutdown, prove effective in reducing energy demands for 5G networks. New solutions, such 
as deep sleep and symbol aggregation shutdown, emerge in the 5G era, offering potent tools 
for energy efficiency. As global efforts intensify to combat global warming, the 
telecommunications sector, setting stringent energy standards, plays a leadership role. 
Despite the impending threefold increase in energy demand with 5G, leveraging insights from 
previous generations and embracing advanced energy-efficiency technologies provides hope 
for balancing data demands with sustainable energy practices. Confronting this challenge 
requires not just technological innovation but a collective global commitment to a greener and 
more sustainable future from a business perspective. 

The development and deployment of 5G networks have ushered in a new era of mobile 
communication. In this dynamic landscape, it is essential to assess and model the power 
consumption of critical network components. Two key power consumption models are central 
to this evaluation: the Base Station (BS) power consumption model and the Carrier 
Aggregation power consumption model. 

The Base Station Power Consumption Model: 

At the heart of this model is the power consumption of a non-mMIMO (non-Massive Multiple-
Input, Multiple-Output) Base Station. It involves a comprehensive calculation of energy 
utilization factors, encompassing all antennas within the BS. Each antenna is equipped with 
its Radio Frequency (RF) transceiver module, complete with a power amplifier (PA). This 
model further considers the power consumption of the Baseband Unit (BBU) associated with 
these antennas, the Direct Current to Direct Current (DC-DC) power supply, the active cooling 
system, and the Alternating Current to Direct Current (AC-DCC) unit facilitating connection to 
the electrical power grid. Notably, the following parameters are subject to variation: 

• The number of RF transceiver modules within a BS. 

• The input power of each transceiver. 

• The transmit power. 

• The power consumption of RF transceiver modules and BBUs. 

• Power efficiency. 

• Power losses in various components, such as the feeder, DC-DC power supply, mains 
supply, and active cooling. 

The Carrier Aggregation Power Consumption Model: 

The Carrier Aggregation power consumption model is indispensable in understanding how 
power utilization scales with the number of active Component Carriers (CCs). This model 
takes into account a host of variable parameters, including: 

• The effective transmit power used by individual Component Carriers. 

• The bandwidth allocated to the Component Carriers. 

• The variable circuit power consumption, which scales linearly with the number of 
active Component Carriers. 

In the ever-evolving landscape of 5G networks, power consumption modeling is a fundamental 
consideration. These models, such as the Base Station power consumption model and the 
Carrier Aggregation power consumption model, provide invaluable insights into energy 
utilization patterns and help shape the efficiency and sustainability of our mobile networks. By 
considering the diverse parameters within these models, we can better understand and 
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optimize the energy footprint of 5G networks, thereby ensuring a greener and more efficient 
future for mobile communications. 

Energy consumption in radio access networks (RANs) can vary based on several key 
parameters, including: 

1.   Network Traffic Load: The amount of data being transmitted through the network at 
any given time affects energy consumption. Higher network traffic often requires more 
energy to operate. 

2.   Network Coverage Area: The size of the area that the RAN needs to cover plays a 
significant role. Larger coverage areas may require more base stations and equipment, 
resulting in increased energy consumption. 

3.   Cell Density: The density of cells or base stations in an area can impact energy usage. 
Higher cell density can increase energy consumption due to the need for more 
equipment to manage connections. 

4.   Technology Generation: Different generations of mobile technology (e.g., 2G, 3G, 4G, 
5G) have varying energy efficiency levels. Newer technologies like 5G are designed to 
be more energy-efficient, but they can still consume substantial power when operating 
at full capacity. 

5.   Antenna Configuration: The type and configuration of antennas used in the RAN can 
affect energy consumption. For instance, advanced antenna technologies, such as 
Massive MIMO, can be more energy-efficient than traditional ones. 

6.   Device Types: The energy efficiency of user devices (e.g., smartphones, IoT devices) 
interacting with the RAN can impact energy consumption. More energy-efficient 
devices can reduce the energy demands on the network. 

7.   Power Saving Features: The implementation of power-saving features in network 
equipment and devices can reduce energy consumption during periods of low activity. 

8.   Network Load Balancing: Effective load balancing among base stations can optimize 
energy consumption by distributing traffic efficiently. 

9.   Environmental Conditions: Environmental factors like temperature and humidity can 
influence the energy needed for cooling systems and equipment, especially in outdoor 
deployments. 

10.  Network Topology: The layout and structure of the network, including the arrangement 
of base stations and their proximity to each other, can impact energy efficiency. 

11.  Equipment Efficiency: The energy efficiency of network equipment and infrastructure, 
including base station hardware, power amplifiers, and cooling systems, is a critical 
factor. 

12.  Power Sources: The source of power, whether from renewable energy or conventional 
sources, can affect the carbon footprint and overall energy consumption of the RAN. 

Optimizing these parameters and employing energy-efficient technologies and practices can 
help reduce the energy consumption of radio access networks while maintaining performance 
and coverage. To do this is a less disruptive scenario the DT modelling of these intertwined 
functions would help testing the optimal path for energy savings. 

Energy Efficiency: Metrics, Measurement and Optimization Strategies 

Many strategies are being considered for energy optimization in networks, both at the system 
and subsystem level, as well as a component and chip level. Switching off a cell or carrier, or 
some of the RF ports, advanced sleep modes both at the chip level and at the protocol stack, 
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and efficient cloud resource management, use of AI/ML techniques for more efficient RF 
transceiver design and operation, are all being investigated by the industry.  

Advanced Use Cases in Energy Efficiency 

The work in energy optimization is in early stages, and a lot of innovation is expected as we 
move into the next generation of wireless deployments.  

One interesting aspect is the interaction between the wireless network, and the energy 
network/grid. Just like the wireless network, there is a trend of disaggregation in energy 
sources as well, with local sources such as solar panels gaining wide usage. This includes the 
use of such local sources for wireless network equipment as well. The management of such 
sources, including decisions on using the local source vs. drawing power from the grid, involve 
energy management protocols on the energy, which have parallels to the wireless protocols 
themselves. The interaction between the energy grid and wireless network is likely to increase 
in complexity in the future.  

Role of DTs 

As described above, energy efficiency is a complex topic with many dimensions. The role of 
DTs will be vital, allowing for  

(a) the modelling of various energy efficiency approaches in a virtual environment 

(b) Creation of synthetic data using accurate DT models of network equipment and 
systems 

(c) A mechanism for live optimization of the network 

3.4.6 Proposed Solution 4 

Achieving energy efficiency, coupled with minimization of energy consumption, typically 
covers the equipment, design and development, and operation, in addition to autonomy and 
alternative choices for energy, cooling, etc. 

Similarly, in the context of O-RAN, this corresponds to energy efficient hardware (AAU/PA, 
servers, accelerators, etc.), energy-efficient design and deployment, including functional 
placement, optimal architecture, and integration, and intelligent software, cloud, and 
automation platforms (RICs) for energy efficient operation, in addition to the use of alternative 
sources of energy, cooling, etc. 

The opportunity is about the ability to conduct scenario analysis, testing, and evaluation, and 
to draw insights and actions, in an energy efficient, secure, and flexible way. The potentially 
continuous output can then facilitate the introduction of new models and configurations, rollout 
of new features, allocation of resources, in addition to prediction and optimization. It should 
be noted that while the use case is highlighted here, the realization and enablement of this 
environment require addressing several challenges and requirements related to all aspects, 
including energy-efficient creation and preservation of the synchronized digital replica, the 
associated tools and capabilities, interfaces, access, and actuation, as well as data 
management and modelling. 

3.5 Use Case 5: DT-RAN for Site-Specific Network Optimization 

3.5.1 Background Information 

Site-specific optimization of the radio access network (RAN) refers to the continuous process 
of fine-tuning network configurations on a per-site basis. The goal is to ensure optimal 
performance for individual cell-sites in terms of key performance indicators (KPIs) like 
coverage, capacity, quality-of-service (QoS), quality of experience (QoE) and energy 
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efficiency. Which attributes are tunable and important for site-specific optimization depends 
on the RAN deployment architecture, as well as the capabilities of cell-site specific network 
elements. As cellular networks continue to evolve with the emergence and deployment of 
innovative technologies beyond 5G, site-specific RAN optimization is poised to become more 
sophisticated due to the increasing number of frequency bands, demanding KPIs (e.g., higher 
data rates, ultra-low latency, wider coverage, lower energy consumption, and high-accuracy 
positioning) and innovation of more advanced antenna technologies. 

Performance evaluation of intricate ‘site-specific’ optimization operations requires a framework 
equipped with an automated analysis and feedback loop. DT stands out as one of the most 
promising technologies to enable that framework. DT for RAN (DT-RAN) is a dynamic digital 
replica of a real-world RAN that simulates the behavior, performance and characteristics of 
the physical RAN infrastructure, and aids in improving operations, maintenance, what-if 
analysis, and decision-making during the network lifecycle. The DT-RAN model for individual 
cell sites can be built using advanced technologies like machine learning, data analytics and 
advanced simulation techniques and validated by data collected from various site-specific 
sources (including network elements and surrounding RF propagation environment from the 
cell site).  

3.5.2 Motivation 

Traditional network optimization in existing cellular infrastructure involves conventional 
optimizers based on Constraint Programming (CP) or Integer Linear Programming (ILP) that 
typically operate based on rules defined manually by domain experts. These rules are usually 
static and generalized for the entire network. There are two key limitations of these network 
optimizers:  

1) Translating network-wide optimization policies into site-specific rules tailored toward a 
particular deployment location is extremely cumbersome if done manually.    

2) The optimizers typically restart the optimization process from scratch each time any 
change in the optimization scenario is triggered. This method is inefficient due to the 
lack of learning capability from past optimization scenarios and the lack of knowledge 
transfer capability to the new optimization task. 

With recent advancements in AI/ML, several ML techniques have emerged, among which 
deep reinforcement learning (DRL) has stood out as one of the most promising candidates for 
advanced network optimization, that can leverage augmentation of general knowledge learned 
during the pre-training phase with continuous learning from the live network, offering site-
specific network optimization policies in an automated and dynamic way. Even though such 
AI-powered network optimizers can largely overcome the shortcomings of traditional 
optimizers, they may suffer from the lack of stability at the preliminary phase. As one example, 
DRL-based network optimizers may show erratic behavior during the initial exploration phase.  

To avoid the adverse effect of such unpredictability on a live network, DT-RAN can play a 
crucial role in providing an experimentation sandbox that faithfully mimics the behavior of the 
site-specific physical network. Within the safe zone of DT, a DRL agent can conduct the 
exploration and acquire necessary knowledge about the physical site, without the risk of 
catastrophic disruption. Post experimentation, the achieved policy can be safely applied to the 
underlying physical network.  

Since the DT-RAN is continually updating its modelling through feedback from the physical 
site, any change in the site-specific network behavior is timely reflected in the digital replica. 
Thus, the network optimizer can routinely validate its performance within the twin domain to 
ensure the validity of its current optimization policies, and if needed, can update, and 
reevaluate the policies in a safe and timely manner before making critical changes to the live 
network. 
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3.5.3 Proposed Solution 

3.5.1 General DT workflow 

Figure 3.5.1 depicts a general workflow for site-specific network optimization using DT.  
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Figure 3.5.1 General DT workflow 

- Step 0: Network management entity (e.g., SMO) continuously receives information 
from the live, physical network and monitors network performance. The underlying DT 
also collects relevant data regularly from the cell sites to keep its twin models up to 
date with the current physical network. 

- Step 1: Network management entity may need to change the network policy due to 
several reasons (e.g., due to changes in the Operator’s intent or due to changes in the 
physical network), which may impact network configuration for specific sites. To 
evaluate the impact of these changes before applying them to the physical network, 
the management entity triggers the DT platform to evaluate the impact of policy change 
on a specific network site. 

- Step 2: DT-RAN collects necessary data (which could be either data already stored in 
the data repository or additional data collected from the live network, or a combination 
thereof depending on the use case), retrieves relevant models from the DT model 
repository that needs to be updated due to the network policy change and updates the 
model parameters to mimic the network configuration changes that are intended to be 
applied to the physical network.  

- Step 3: DT-RAN evaluates the updated twin models and analyses the behavior of the 
network site in the twin domain. 

- Step 4: DT-RAN compares the result of the model evaluation analysis against pre-
defined performance threshold (which could be a single value or a range of values) to 
see whether the updated model meets the site-specific performance criteria as per the 
new network policy under test. 

- Step 5: There are two possibilities:  
o Step 5a: If the outcome of step 4 is negative, i.e., the updated model does not 

pass the performance criteria, it goes back to step 3 and repeats from the 
process of site-specific model update (e.g., by retraining the AI/ML model used 
for model update). There could be a pre-defined number of iterations through 
which the model retraining could be retriggered of Step 5a happens. If the 
model does not meet the performance criteria after that predefined number of 
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iterations, the updated model is rejected, and the DT falls back to the pre-
existing model. 

o Step 5b: If the outcome of step 4 is positive, DT-RAN next triggers the 
evaluation of the site-specific update in the context of network-wide 
performance impact (e.g., if site-specific beam pattern is changed, whether it 
would impact neighboring cells in terms of interference).  

- Step 6: Collecting relevant data and additional models from the DT-RAN repository, 
the network wide evaluation of the impact of the site-specific model(s) is carried out. 

- Step 7: DT-RAN compares the result of the model evaluation analysis against the pre-
defined performance threshold to see whether the updated model meets the network-
wide performance criteria. 

- Step 8: There are three possibilities: 
o Step 8a: If the outcome of step 7 is negative, i.e., the updated model does not 

pass the performance criteria, it goes back to step 3 and repeats from the 
process of site-specific model update (e.g., by retraining the AI/ML model used 
for model update). 

o Step 8b: If the outcome of step 7 is positive, DT-RAN sends control signal to 
network management entity confirming that a new set of network configurations 
corresponding to the updated twin model can be applied to the real-network. At 
the same time, it also internally triggers model repository update with the 
revised model(s) reflecting the network configuration change. 

o Step 8c: If the outcome of step 7 is negative, i.e., the updated model doesn’t 
pass the performance criteria, and the number of iterations has reached a pre-
defined maximum limit, the updated model is discarded and a control message 
is sent to the network management entity suggesting that the intended network 
policy change cannot be implemented in the physical network, since an 
optimized set of network configurations that can implement the policy change 
and at the same time meet the performance criteria could not be found in the 
optimization process (i.e. in the site-specific model update process) . 

- Step 9: If the previous step is not 8c, the network management entity triggers site-
specific configuration changes in the physical network. 

3.5.2 Application of DT workflow 

3.5.2.1 Site-specific positioning  

Site-specific network optimization can play a crucial role in improving positioning accuracy and 
reliability in wireless networks for 5G and beyond. Positioning in this context often refers to 
determining the location of mobile devices or Internet of Things (IoT) devices within the 
coverage area of the network. 

The workflow of DT-RAN in site-specific optimization for positioning involves a series of steps 
and processes to create, maintain, and utilize the DT to enhance positioning accuracy within 
a specific environment.  

Upon reception of a positioning intent from the network management entity, the DT-RAN can 
run simulations and tests within the DT to evaluate different configuration options and 
positioning algorithms. Afterwards, the DT-RAN can analyze simulation results to identify 
optimal network settings and positioning strategies. In this process, AI/ML can be integrated 
to analyze real-time and historical data from the DT and be used to optimize positioning 
algorithms, adapt to changing conditions, and predict potential issues. 

Input Parameters: 

The data for positioning may include the following: 
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• Various measurements (such as downlink reference signal time difference (DL-RSTD) 
measurements, uplink relative time of arrival (RTOA) measurements, downlink 
positioning reference signal received power (RSRP) measurements, uplink sounding 
reference signal (SRS) angle-of-arrival (AoA) measurements, UE Rx-Tx time 
difference measurements, gNB Rx-Tx time difference measurements, channel impulse 
response measurements, and line-of-sight/non-line-of-sight (LOS/NLOS) 
measurements),  

• Time stamps of the measurements,  

• Ground-truth labels, and  

• Configuration and deployment information (such as transmission and reception point 
(TRP) coordinates, beam azimuth and elevation angular information, and reference 
signal configuration). 

Output Parameters: 

The output of the DT-RAN for positioning may include the following: 

• Recommended positioning methods (such as downlink time difference of arrival (DL-
TDOA), downlink angle of departure (DL-AoD), uplink time difference of arrival (UL-
TDOA), uplink AoA, round-trip time (RTT), direct AI/ML based positioning, AI/ML 
assisted positioning, or a combination thereof)  

• Associated configuration options (such as frequency bands, transmit power levels, 
antenna characteristics, and reference signal configuration). 

With the findings from the DT simulations and analyses, one can implement the optimized 
positioning strategy in the physical RAN and continuously monitor the positioning performance 
in the real-world using data from sensors and network equipment. Then the RAN can compare 
the actual performance with the predictions made within the DT and use the feedback loop 
between the real-world system and the DT to iteratively improve positioning accuracy and 
optimize network parameters. In particular, as conditions change or new data becomes 
available, the DT can be updated, and the configuration options and positioning algorithms 
can be reevaluated. 

3.5.2.2 Site-specific probing beams for mmWave beam alignment 

Engaging mmWave frequency bands requires the use of high-dimensional antenna arrays in 
order to accommodate the harsh wireless channel propagation characteristics associated with 
high frequency bands. These systems rely on highly directional beamforming in order to 
maintain a viable signal strength at the receiver. Both the downlink and uplink employ transmit 
and receive side beamforming respectively. An initial step in opening the communication link 
is to determine the combination of transmit and receive beams that maximize the signal-to-
noise-ratio (SNR) of the link.  

One way to accomplish initial access (IA) is via an exhaustive search. That is, every possible 
combination of beam pairs is tested to find the pair with the best SNR. The large number of 
beam combinations makes this a time-consuming process. Naturally, as the industry moves 
to higher frequencies (possibly the sub-THz band for 6G), the dimension of the transmit and 
receive antenna arrays continues to expand, thereby increasing the beam search time at an 
even faster pace. Therefore, we are motivated to find a better low-latency strategy for IA. 

One such approach is reported in [8]. In this scheme a site-specific probing code book is 
learned using a complex valued neural network. The learned codebook consists of site-
specific probing beams that capture particular characteristics of the propagation environment. 
Beam sweeping measurements from the probing codebook are used to predict the optimal 
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narrow beam.  An end-to-end neural network is used to jointly train the probing codebook and 
the beam predictor. The narrow beam employed in the communication link itself is formed 
using weights from a conventional beamforming codebook. This method has the advantage 
of minimizing the beam pairing latency. 

Learning the probing codebook and the weights for the beam prediction neural network (NN) 
can be performed in DT-RAN. The geometry of the coverage area of a particular gNB is 
rendered in a DT and radio frequency (RF) ray tracing is employed to reveal the channel 
propagation characteristics. Periodically, the DT training pipeline can be run to update both 
the probing codebook and the beam prediction neural network. 

Input Parameters: 

The input to the DT-RAN for beam alignment may include the following: 

• The geometry of the base station coverage region. This would include - descriptions 
of buildings, foliage, other structures in the scene accompanied by the material 
properties that influence EM wave propagation (e.g., permittivity, conductivity, and 
other material properties). 

• The location of the base station in the scene. 

• Base station antenna configuration and the radiating pattern for the elements that 
compose the antenna panel. 

• Typical UE configurations and location distributions 

• Trigger for probe codebook/beam predictor NN re-training 

Output Parameters: 

The output for the DT-RAN for beam alignment may include the following: 

• Channel probing table with a typical number of entries between 10 and 20. 

• The neural network weights for the beam predictor network.  

 

4 Conclusion 

The report provides an introduction and analysis to the 6G DT-RAN use cases. It is identified 

that DT-RAN is an important enabler for 6G in many areas, e.g. AL/ML training, evaluation 

and performance assurance, network automation, network planning, network energy saving 

and site-specific network optimisation. The motivation and value analysis of each identified 

DT-RAN use cases are provided and related high-level solutions are proposed which will be 

considered for the future DT-RAN research phases and normative standardisations.     
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